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Abstract: Interpersonal or multiagent coordination is a common part of everyday human activity. Identifying the 
dynamic processes that shape and constrain the complex, time-evolving patterns of multiagent behavioral 
coordination often requires the development of dynamical models to test hypotheses and motivate future 
research questions. Here we review a task dynamic framework for modeling multiagent behavior and 
illustrate the application of this framework using two examples. With an emphasis on synergistic self-
organization, we demonstrate how the behavioral coordination that characterizes many social activities 
emerges naturally from the physical, informational, and biomechanical constraints and couplings that exist 
between two or more environmentally embedded and mutually responsive individuals.  

1 INTRODUCTION 

Many of the everyday movements and actions that 
individuals perform are accomplished in a social 
setting and are coordinated with the actions of other 
individuals. Such behavioral activity is sometimes 
deliberate and conscious, like when two people are 
moving a large piece of furniture together, or 
spontaneous and automatic, such as when two 
people avoid bumping into one another when 
walking on a busy sidewalk. It can involve the 
synchronous coordination of rhythmic movements, 
such as when individuals synchronize their legs 
movements while walking and talking, or the 
asynchronous coordination of complementary or 
discrete actions, such as when loading a dishwasher 
together. Finally, multiagent coordination tasks often 
involve a nested structure of sub-actions, with the 
varied sequencing of these actions making up the 
complex syntax of everyday social activity. 

The varied complexity of social and multiagent 
coordination, however, belies the seemingly 
effortless and robust manner with which human (and 
many animal) agents are able to perform these 
activities. Indeed, two or more human agents can 

often spontaneously coordinate their movements and 
actions in highly novel task contexts with little to no 
prior experience or learning. This apparent context 
insensitivity has led many researchers to focus on 
trying to identify the invariant set of internal 
(mental) neurocognitive and perceptual-motor 
mechanisms that might support effective multiagent 
coordination across a wide range of task goals and 
situations (Graf, et al., 2009; Newman-Norland et 
al., 2007; Vesper et al., 2010). It is becoming 
increasingly clear, however, that that the CNS 
cannot “do it all”, and that there is more to social 
action and coordinated multiagent activity than 
simply neurocognitive processes alone (Coey et al., 
2012; Eiler et al., 2013; Knoblich, et al., 2011; 
Schmidt et al., 2011). This is particularly true for 
complex multiagent tasks that require individuals to 
continuously adapt their behavior to each other and 
to a dynamic task environment, where adopting a 
purely neurocognitive approach requires increasing 
appeals to ever higher levels of ungrounded, 
representational complexity, as well as unsustainable 
levels of executive control (Chemero, 2009; Schmidt 
et al., 2011).  



 

So what other processes or mechanisms might 
operate to shape and constrain the complex time-
evolving patterns of behavioral coordination that 
characterize everyday interpersonal or multiagent 
activity? Here, we propose that many of the stable 
patterns of interpersonal and multiagent coordination 
that occur during social activity lawfully emerge 
from the physical and informational constraints and 
couplings that exist between two or more 
environmentally embedded and mutually responsive 
individuals (Marsh, Richardson & Schmidt, 2009; 
Richardson & Kallen, 2015; Schmidt et al., 2011; 
Schmidt, Carello & Turvey, 1990). Of particular 
relevance here is the resultant implication that 
context dependent multiagent coordination can be 
understood and modeled as a coupled nonlinear 
dynamical system. Accordingly, the aim of the 
current paper is to provide a general overview of 
how one can employ coupled nonlinear dynamical 
models to capture and explain the robust, time-
evolving structure of Embedded Multi-Agent 
Dynamics (EMAD). Drawing heavily on the task 
(Saltzman & Kelso, 1987) and behavioral dynamic 
(Warren, 2006) approaches to human behavior, we 
first briefly define a conceptual framework for 
modeling EMAD. We then offer paradigmatic 
examples illustrating how this framework can be 
employed to formalize low-dimensional, coupled, 
nonlinear differential equation models of 
coordinated interpersonal and multiagent behavior. 

2 MODELING FRAMEWORK  

Consistent with more general nonlinear dynamics 
and complex systems approaches to human behavior 
(for reviews see e.g., Kelso, 1995; Richardson, et al., 
2014; Thelen & Smith, 1994; Warren, 2006), and 
building on the dynamical interpersonal coordination 
research of Schmidt and colleagues (e.g., Schmidt et 
al, 1990; Schmidt & Turvey, 1994; Schmidt & 
O’Brien, 1997; Schmidt & Turvey, 1994), the 
framework for modeling EMAD detailed here 
emphasizes self-organization and contextual 
emergence. Accordingly, the stable organization of 
multiagent behavior is not captured by means of a 
centralized control structure or neurocognitive 
mechanism, but rather is modeled as an emergent, a 
posteriori consequence of the distributed interaction 
of physical processes, informational and 
neurological couplings, and contextual constraint. 
Accordingly, stable patterns of behavioral 
coordination correspond to functional 
(re)organizations of a multiagent-environment 

system (e.g., limbs, movements of different actors, 
objects within a social task environment), one that is 
temporarily constrained to act as a single coherent 
unit or synergy, formed and destroyed in response to 
changing task goals and perceived action 
possibilities (Riley, et al., 2011).  

More formally, environmentally embedded 
interpersonal or multiagent coordination emerges 
from the activity of two or more agents, Ai (where i 
= 1, 2, … n agents) in a changing task environment, 
E, via the detection of information, I, and the 
reciprocal and mutually constraining modulation of 
behavioral action and environmental events by the 
physical forces, F, exerted in the environment by the 
agents or by other environmental objects or surfaces 
(or by both). 

  

Figure 1: Illustration of a task dynamic framework for 
modeling Embedded Multi-agent Dynamics (EMAD). See 
text for details. 

A two-agent (interpersonal) illustration of this 
multiagent-environment modeling framework is 
illustrated as a system graph in Fig. 1. Here, each 
agent, i, and task relevant environmental objects and 
surfaces, j, are represented as nodes, with the 
different nodes linked via mechanical forces, F, and 
information, I. Note that an agent’s behavior is also 
a function, G, of intrinsic dynamical or self-
referential processes. Similarly, environmental 
objects or surfaces can also be influenced via 
physical, F, object-object and object-surface 
interactions.  

This graph representation defines the “bottom-
up-all-the-way-down” nature of EMAD, where the 
general aim of modeling such behavior is to 
formalize the simplest set of functional relations that 
give rise to observed macroscopic behavioral order. 
Different task systems will of course entail different 



 

graphs, each needing to be formalized into a specific 
system of dynamical equations. This is best achieved 
by defining a functional description of the 
multiagent task dynamics in terms of an abstract task 
space. Similar to the intrapersonal task dynamic 
formalism of Saltzman and Kelso (1987), this   
includes appropriately defining (i) the task goal in 
terms of the relevant terminal objective, (ii) the 
minimal number of task dimensions (i.e., relevant 
task axes or variables), which correspond to the 
active degrees-of-freedom of the task’s end-effector, 
and (iii) the appropriate task dynamics (equations of 
motion) for each task dimension; equations that 
should qualitatively capture the movement or action 
trajectories that are afforded along each task axis of 
the terminal objective.  

Admittedly, defining the relevant task 
dimensions and appropriate equations of motion for 
a specific multiagent task is not always easy and can 
require an extensive amount of empirical research 
and theorizing, not to mention a considerable 
amount of trial-and-error. It is with this mind that we 
have chosen to review a range of simple, yet 
ubiquitous joint-action tasks and behaviors in order 
to best illustrate this modeling process and how task 
dynamic models (specifically with respect to 
differential equation models) can be formulated to 
capture and understand the interactive and self-
organizing processes that determine coordinated 
multiagent behavior. 

3 RHYTHMIC COLLISION 
AVOIDANCE  

As a first example, in order to model the task 
dynamics of goal directed multiagent coordination, 
we consider the interpersonal rhythmic collision 
avoidance task investigated by Richardson, et al., 
(2015). For this task, pairs of naive participants were 
instructed to continuously move a visual, computer 
cursor (a small red dot) back and forth between 
different sets of square target locations, positioned at 
diagonally opposite corners of a 50” computer 
monitor. Each participant in a pair stood facing their 
own computer monitor, which displayed the real-
time motion of the participant’s own cursor, as well 
as the motion of their co-participant’s cursor. 
Participants controlled their respective computer 
cursor using a motion-tracking sensor (see Fig. 2 
top). One participant was instructed to continuously 
move their cursor between the bottom-left and top-
right targets while the other participant was 

instructed to continuously move their cursor 
between the bottom-right and top-left targets. Most 
importantly, participants were instructed to produce 
these continuous cursor motions without colliding 
into one another.  

In this task, participant pairs were faced with a 
conflict between the natural tendency to synchronize 
straight-line movement trajectories between the 
targets and the fact that such synchronization would 
result in a collision. Thus, the research question 
being investigated was what stable pattern(s) of 
movement coordination would emerge to ensure task 
success? 

 

Figure 2: Illustration of the experimental setup (top left) 
and task display (top right) employed in the Richardson et 
al (2015) collision avoidance task. (bottom) Prototypical 
examples of the movement trajectories exhibited by pairs.  

 
Although pairs initially tried to adopt relatively 

straight line trajectories between the target locations, 
the results revealed that greater than 90% of pairs 
quickly converged (by the 3rd or 4th trial) onto a 
stable task solution that involved complementary 
task roles, with one participant adopting a more 
straight-line trajectory between targets and the other 
participant adopting a more elliptical trajectory 
between targets (see Fig. 2, bottom). Moreover, the 
participant who adopted the more elliptical 
trajectory consistently lagged behind the participant 
who adopted the more straight-line trajectory by an 
average of approximately 10° to 30°. Richardson et 
al. (2015) hypothesized that these complementary 
behavioral dynamics were the result of a functional 
asymmetry in the repulsive coupling that prevented 
collisions, one that not only resulted in an inter-
participant asymmetry in the ellipticality of the 



 

movement trajectories, but also simultaneously 
allowed participants to synchronize their between 
target movements at a phase lag (further increasing 
the margin of safety). Of particular relevance to our 
discussion here, is that Richardson et al. were able to 
test this hypothesis by developing a task dynamic 
model of the interpersonal collision avoidance task.  
 

Figure 3. (a) Illustration of the abstract task space axis for 
the collision avoidance model developed by Richardson, et 
al., (2015).  (b) The task space orientated in the target goal 
space for a pair of coupled individuals. See text for more 
details. 

 
Motived by the same task dynamic framework 

described above, Richardson, et al., (2015) 
developed this model by defining the terminal 
objective of each actor’s task goal to be a rhythmic 
motion of the end-effector (i.e., stimulus/end-
effector/hand, modeled as a point mass) between 
two targets within a planar (two-dimensional) task 
space (see Fig. 3a). In this task space, the x-axis 
corresponded to the axis of instructed direction of 
oscillation, and was provided with limit cycle 
(oscillatory) dynamics. The orthogonal task axis, y, 
corresponded to deviations away from the x-axis, . 
Given that an actor must minimize these deviations 
with respect to achieving the instructed task goal, 
Richardson et al. provided the y-axis with simple 
point-attractor (damped mass-spring) dynamics. 

Assuming a point mass of 1 (for simplicity), the 
functional defined task space was then specified as: 

 
𝑥! − 𝑏!!  𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!!𝑥! = 0 

𝑦! + 𝑏!!𝑦! + 𝑘!!𝑦! = 0 
(1a) 

 
for actor 1 and  

 
𝑥! − 𝑏!!𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!!𝑥! = 0 

𝑦! + 𝑏!!𝑦! + 𝑘!!𝑦! = 0 
(1b) 

 
for actor 2. Here, 𝑥! and 𝑦!, 𝑦! , 𝑥!   and  𝑦! , 𝑥!   and 
𝑦!  correspond to the position, velocity and 
acceleration of each actor’s end effector (i.e., 
hand/cursor) along each task axis, respectively. bxi 
and byi are the damping coefficients for axis xi and yi, 

respectively, kxi and kyi are stiffness coefficients for 
axis xi and yi, respectively, and (𝑐!"𝑥!!𝑥!) is the van 
der Pol function for axis xi. 

To capture the natural entrainment observed 
between co-actors, Richardson and colleagues then 
added an attractive coupling function to each 
system, similar to what is typically employed for 
modeling generalized rhythmic (inphase) 
coordination. That is, they added the diffusive 
coupling functions 

 
𝛼!(𝑥! − 𝑥!) (2a) 

 
and 
 

𝛼!(𝑥! − 𝑥!) (2b) 
 
to the equations that define each actor’s instructed  
axes of motion, which resulted in the system 
 
𝑥! − 𝑏!!𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!!𝑥! = 𝛼!(𝑥! − 𝑥!) 

𝑦! + 𝑏!!𝑦! + 𝑘!!𝑦! = 0 
𝑥! − 𝑏!!𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!!𝑥! = 𝛼!(𝑥! − 𝑥!) 

𝑦! + 𝑏!"𝑦! + 𝑘!"𝑦! = 0 
 

(3) 

It is important to note at this point that Eq. (3) 
provides an idealized model of inphase interpersonal 
rhythmic coordination and can be adapted to model 
the inphase coordination of any two end effectors or 
point masses (e.g., finger tips; hands, feet, actors) 
irrespective of the angular orientation of the 
instructed motion axis. Moreover, other behavioral 
patterns, such as antiphase coordination and the 
bistable nature of rhythmic coordination performed 
in the same direction/plane of motion can also be 
captured using alternative coupling functions, e.g., 
as previously identified by Haken, Kelso & Bunz 
(1985) (also see e.g., Dumas et al., 2014; Kelso, 
1995; Schmidt & Richardson, 2008) 

Based on the behavior of participants at the 
beginning of the experiment (see Fig. 2), 
Richardson, et al. (2015) began with the assumption 
that pairs were initially constrained by the dynamics 
of Eq. (3). The question then became what minimal 
changes in the structure of Eq. (3) were required to 
produce behavior qualitatively similar to that 
produced by pairs by the end of the experiment? 
Given that the task instructions were to ‘avoid 
bumping or colliding into each other’, the simplest 
modification was to add a repelling coupling force 
that acted on each participant’s end-effector to 
ensure they were repelled from each other. This was 
accomplished using the repeller functions 
 



 

𝛾!(𝑥! + 𝑦!)𝑒!|!!!!!| (4a) 
 

𝛾!(𝑥! − 𝑦!)𝑒!|!!!!!|  (4b) 
 
for the primary task axes, x1 and x2, respectively, and  

 
𝛾!(𝑦! − 𝑥!)𝑒!|!!!!!|  (4c) 

 
𝛾!(𝑦! + 𝑥!)𝑒!|!!!!!| (4d) 

 
for the secondary task axes, y1 and y2, respectively. 
In short, these repeller functions push the two 
participants’ end-effectors away from each other, at 
a strength determined by the parameters, γi, and 
inter-cursor distance, i.e., the exponential terms in 
Eq. 4 mean that larger (smaller) distances between 
the participants’ cursors result in weaker (stronger) 
repelling forces (see Richardson et al., 2015 for 
more details about how these coupling functions 
were derived). Essentially, if γi in  participant-i’s (x, 
y) system is set to zero, the effect of the repeller 
coupling is null and a straight-line trajectory will be 
created that is aligned along the participant’s limit-
cycle axis. However, if γi is set to a value greater 
than zero, the repeller coupling adds a force along 
both task-axes  of participant-i, resulting not only in 
greater ellipticality (due to forces added along the 
point-attractor task axis), but also in a phase lag 
relative to participant-j when γi is greater than γj (due 
to forces added along the limit-cycle task axis). 

The complete task dynamic model derived by 
Richardson et al., (2015) can therefore be written as 

 
𝑥! − 𝑏!!𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!!𝑥! 

= 𝛼!(𝑥! − 𝑥!)– 𝛾! 𝑥! + 𝑦! 𝑒!|!!!!!| 
𝑦! + 𝑏!!𝑦! + 𝑘!!𝑦! =   𝛾!(𝑦! − 𝑥!)𝑒!|!!!!!| 

 
𝑥! − 𝑏!!𝑥! + 𝑐!!𝑥!!𝑥! + 𝑘!! 

= 𝛼!(𝑥! − 𝑥!) + 𝛾! 𝑥! − 𝑦! 𝑒!|!!!!!| 
𝑦! + 𝑏!!𝑦! + 𝑘!!𝑦! = −𝛾!(𝑦! + 𝑥!)𝑒!|!!!!!| 

 

(5) 

Importantly, this system was not only able to 
successfully capture the stable asymmetric task 
solution adopted by participants—namely, 
asymmetric movement trajectories and phase-lagged 
rhythmic synchronization—but it could also capture 
the different types of successful and unsuccessful 
movement solutions adopted by participants pairs 
throughout the course of the experiment. 

Essentially, there are three qualitative types of 
movement trajectories that can be generated from 
Eq. (5). These are displayed in Fig. 4 and depend on 
the magnitudes of γ1 and γ2 and the degree that γ1 ≠ 
γ2. First, if γ1 = γ2 = 0, then no motion is created 

along 𝑦! or 𝑦! (i.e. 𝑦! = 𝑦! = 0), which makes the 
behavior of Eq. (5) equivalent to the behavior of Eq. 
(3). This corresponds to straight-line inphase 
coordination (Fig. 4 left) and as noted previously 
was what most participants in the Richardson et al 
study spontaneously produced at the beginning of 
the experiment—albeit to the detriment of success, 
in that such behavior leads to collisions.  

The second qualitative type of movement 
trajectories exhibited by Eq. (5) occur when γ1 ≠ γ2. 
As can be seen from an inspection of the right panel 
of Fig. 4, when γ1 ≠ γ2 an asymmetry in the between 
target movement trajectories emerges, as well as a 
phase lag between the more elliptical and the more 
straight-line trajectory. This behavioral pattern is 
similar to the successful task solution adopted by 
pairs in the Richardson et al. study and is consistent 
with the hypothesis that participants adopted an 
asymmetric relation in coupling in order to avoid 
collisions and simultaneously synchronize their 
between target movements.  

 

Figure 4: Examples of the three qualitative types of 
movement trajectories that can be produced by the 
Richardson et al., (2015) collision avoidance model, Eq. 
(5), for various settings of the parameters of γ1 and γ2(see 
text for more details). 

 
Lastly, if γ1 = γ2 > 0, then equivalent motion 

patterns are created along 𝑦! and 𝑦! resulting in 
elliptical trajectories that are symmetric across 
participants and synchronized with zero phase lag 
between the participants’ limit cycle axes. 
Interestingly, this third situation also results in a 
stable collision avoidance solution, especially for γ1 
= γ2 >> 0, but one that does not include a phase lag 
between the limit-cycle axes and, hence, has a lower 
‘margin of safety’ than the asymmetric solution 
adopted by participants for the second qualitative 
type of movement pattern described above.  

 The third type of task solution was observed in 
a follow-up study (Eiler, Kallen, et al., 2015), in 
which the participants were not penalized for 
collisions. Under these conditions, participant pairs 
also produced movements with less ellipticality in 
this recent study. That is, pairs produced a more 
symmetrical pattern of elliptical inphase 
coordination with a smaller degree of ellipticality 
than when collisions were penalized. Given Eq. (5), 



 

this suggests that decreasing the cost of failure not 
only weakened the repulsive coupling between 
participants, but also resulted in pairs employing 
similar magnitudes of repulsive avoidance (i.e., γ1 ≈ 
γ2 > 0). 

Most recently, Eiler, Coey, et al., (2015) have 
also demonstrated how Eq. (5) can predict the types 
of patterns exhibited between pairs of individuals 
walking or running back and forth between target 
locations in a real 3-dimensional space. Specifically, 
Eiler, et al. instructed pairs of participants to walk or 
run at a comfortable pace back and forth between 
sets of target landmarks positioned in a cross-type 
arrangement (see Fig. 5, left). The distance between 
the participants’ target landmarks were also 
manipulated, with the landmarks positioned either 3 
meters or 5 meters apart. Of particular significance, 
was that the 2 (speed: walk vs. run) by 2 (distance: 3 
vs. 5 m) within subjects design employed in this 
study essentially mapped onto different 
“chances/severity” of collision conditions, with 
walking between targets positioned 5 m apart having 
the lowest chance/severity of collision and running 
between targets positioned 3 m apart having the 
highest chance/severity of collision.  

As expected, the degree to which pairs adopted 
synchronous straight line or elliptical movement 
trajectories between the target locations, as well as 
the symmetry of the co-actors movement 
trajectories, was a function of these chance/severity 
of collision manipulations (see Figure 5, right)—
patterns that could be captured by Eq. (5) by 
modulating limit-cycle axis frequency (i.e., kxi and 
kyi) and the magnitude and symmetry of the 
repulsive coupling parameters γi. 
 

Figure 5. (left) experimental setup for the walking and 
running collision avoidance task investigated by Eiler et 
al., (2015). (right) Example movement trajectories for the 
different target distance and pace conditions explored. 

4 MULTIAGENT HERDING 

As a second example of how task dynamic modeling 
can be employed to understand EMAD, we consider 

the multiagent sheepdog herding game recently 
investigated by Nalepka et al., (2015). This game 
required pairs of naïve participants to work together 
to contain groups of 3, 5, or 7 virtual sheep (i.e. 
small, ‘wool’-covered balls) within a central target 
region of a virtual field presented on a large tabletop 
display (see Fig. 6). The sheep’s’ movements were 
governed by random Brownian motion dynamics 
and were repelled away from virtual dogs (a blue or 
red colored box) that the participants’ controlled in 
real-time using hand-held motion tracking sensors. 
Specifically, the participants held the sensors in their 
hands on top of the colored boxes (dogs) projected 
on the tabletop display, essentially making their 
hand the “sheepdog”. 
 

 
Figure 6. Experimental setup (top) and birds-eye view of 
game field (bottom) for the sheepdog game investigated by 
Nalepka et al (2015). 

Initially all participants pairs adopted a kind of 
search and recover strategy, in which each 
individual would move toward and corral the sheep 
furthest from the center of the game field on their 
side of the table, moving from sheep to sheep in an 
attempt to get all of the sheep within the central 
target area and then keep them there. However, 
when a pair’s search and recover performance 
improved to the point where they could consistently 
and effectively corral the sheep into the target region 
in the center of the game field, most pairs 



 
 Figure 7. Time lapsed (t1…t6) illustrations of the two behavioral modes exhibited by pairs in the sheepdog herding game. 
Dashed arrows indicate movement direction. Blue and red circles highlight participant (sheepdog) position. 
 
spontaneously transitioned to a coupled oscillator 
containment strategy, in which the participants 
synchronously moved back and forth in a 
semicircular inphase or antiphase manner around the 
target containment region—establishing a kind of 
“spatiotemporal” wall around the sheep. The two 
modes of behavior are illustrated in Figure 7.  

Given that nearly all participant pairs 
spontaneously adopted the search and recover 
strategy at the very beginning of the experiment 
(participants could not talk during the experiment) 
and then, over the course of repeated performance, 
also discovered the coupled oscillatory containment 
strategy, Nalepka, et al., concluded that both 
behavioral modes were entailed by the constraints, 
goals and inter-agent couplings that defined the 
multiagent sheep herding game. In other words, the 
behavioral modes adopted (and discovered) by 
participants were both stabilities of the games task 
dynamics. Furthermore, finding that the stable 
patterns of synchronized oscillatory containment 
were consistent with the stabilities of intra- and 
interpersonal rhythmic coordination (e.g., Haken et 
al., 1985; Kelso, 1995; Schmidt et al., 1990; Schmidt 
et al., 1998; Richardson et al., 2007)——namely, 
stable inphase and antiphase behavior was observed, 
with inphase coordination occurring more frequently 
and more stably than antiphase coordination—also 
led Nalepka and colleagues to conclude that the 
underlying dynamical system should entail a 
corresponding coupled oscillator process. 

In support of these conclusions, Nalepka, et al. 
have been developing a simple task dynamic model 
of the sheepdog game that not only captures (i) both 
behavioral modes within the same system of 
equations of motion and (ii) the prototypical 
dynamics of interpersonal rhythmic coordination 

(i.e., coupled oscillators), but also (iii) the possibility 
for a spontaneous transition between the two 
behavioral modes as a function of a sheep-distance 
dependent Hopf bifurcation (here we present a 
preliminary version of the model that has been 
developed to date). As illustrated in Fig. 8, the 
preliminary model (still to be completely validated) 
captures the terminal objective of a participants’ 
behavior with respect to the center of containment 
region within the ξx and ξy game space. Here, xi is 
the oscillatory perimeter path of each participant i’s 
hand, where i = 1 or 2, with respect to half (π-
radians) of the target containment region of success 
closest to the participant’s side of the game space. yi 
corresponds to the radial distance of each participant 
from the center of the game space and θi is the radial 
angle of each participant from the center of the game 
space defined with respect to the ξy polar axis on 
each participants side of the table (i.e., +ξy for 
participant 1 and -ξy  for participant 2). Thus, each 
participant’s perimeter path, xi, is centered on the 
participants radial (yi, θi) position within the (ξx, ξy) 
game space.  

To be consistent with the previous research 
modeling the dynamics of rhythmic arm and hand 
movements (Kay et al., 1987), and rhythmic 
interlimb and interpersonal coordination (Haken, et 
al., 1985; Schmidt & Richardson, 2008), the 
topology of the xi perimeter path movement was 
defined using a set of coupled hybrid nonlinear 
oscillators of the form 
 
𝑥! + 𝛼!𝑥! + 𝛽!𝑥!! + 𝛾!𝑥!!𝑥! + 𝜔!!𝑥!            (6) 

  = 𝑥! − 𝑥! (𝐴 − 𝐵 𝑥! − 𝑥! !) 
𝑥! + 𝛼!𝑥! + 𝛽!𝑥!! + 𝛾!𝑥!!𝑥! + 𝜔!!𝑥! 
  = 𝑥! − 𝑥! (𝐴 − 𝐵 𝑥! − 𝑥! !) 

 



 

with the positive/negative (excitatory/inhibitory) 
damping parameters 𝛼! and 𝛼!, scaled as a function 
of sheep distance using the equation 
 

𝛼! = 𝛿!(𝜑!",!(!)! − 𝐶!",! − 𝛼!) (7) 
 
For Eq. 6, 𝑥! and 𝑥!, 𝑥! and 𝑥!, 𝑥! and 𝑥!  correspond 
to the position, velocity and acceleration of each 
agent’s hand along the 𝑥! path, 𝜔!! defines the 
stiffness or frequency of movement along the 
corresponding 𝑥! path, and the functions (𝛽!𝑥!!) and 
(𝛾!𝑥!!𝑥!) corresponding to Rayleigh and van der Pol 
escapements terms, respectively. The coupling 
function to the right of the equals sign in each 
equation is the same as that previously derived by 
Haken et al., (1985), and defines both inphase (0°) 
and antiphase (180°) relative phase relationships as 
the stable coordination modes between the two 
oscillators (when 𝛼! and 𝛼! < 0), whose relative 
strength is defined by the parameters A and B. 
 

 
Figure 8. Illustration of the task space employed for the 
sheep-herding model which captures player i’s (where i = 
1 or 2) sheepdog location at any time within the ξx and ξy 
planar game space in polar coordinates (yi, θi), with yi 
corresponding to the radial distance of player i from the 
center of the ξx and ξy planar game space and θi 
corresponding to player i's radial angle (± 90°) from the ξy 
game space axis on their side of the game field. xi is the 
oscillatory perimeter path of each participant i’s sheepdog 
with respect to half (π-radians) of the target containment 
region of success closest to the participant’s side of the 
game space, such that each participant’s perimeter path, xi, 
is centered on the participants radial (yi, θi) position within 
the (ξx, ξy) game space (see text for more details). 

Central to the switch between the search and 
recover and oscillatory containment modes of 
behavior is the Hopf bifurcation that occurs for each 
oscillator system, 𝑥!, when 𝛼! is decreased from a 
positive to a negative value. That is, when 𝛼! > 0, 𝑥! 
behavior is that of a nonlinear damped mass spring 
with a stable fixed-point solution. However, when 𝛼! 
< 0, 𝑥! behavior is that of a nonlinear limit cycle 
oscillator.  

As defined in Eq. (7), the value of 𝛼! at any 
instance in time, (t), is a differential function of the 
distance, 𝜑!",!(!), of the furthest sheep on participant 
i’s side of the game space with respect to a 
maximum safe containment distance, 𝐶!",! and a 
fixed  rate of change parameter 𝛿!. Accordingly, 
when the distance, 𝜑!",!(!), of the sheep furthest 
from the center of the game space on participant i's 
side of the game space is outside participant i's 
maximum safe containment distance,  𝐶!!,!, 𝛼! > 0 
and behavior along the 𝑥! corresponds to that of a 
nonlinear mass damped spring. Conversely, when 
the distance, 𝜑!",!(!), of the sheep furthest from the 
center of the game space on participant i's side of the 
game space is inside participant i's maximum safe 
containment distance,  𝐶!",!, 𝛼! < 0 and behavior 
along the 𝑥! corresponds to that of a nonlinear limit 
cycle oscillator. 

A participant’s radial distance, 𝑦!, was defined 
as 

  
𝑦!−𝑏!"𝑦! − 𝜀! 𝑦! − (𝜑!",!(!) + 𝐶!",!) = 0 

 
(8) 

with the radial orientation 𝜃!   defined by  
 

𝜃! − 𝑏!"𝜃! − 𝜇! 𝜃! −   𝜑!",! ! 𝐷!",! =   0  
 

(9) 

Here, 𝑦! and 𝑦!, and 𝜃! and 𝜃! correspond to the 
velocity and acceleration of participant i’s radial 
distance and radial orientation from the center of the 
game space, respectively. 𝜑!",!(!) is again the 
distance of the furthest sheep on participant i’s side 
of the game space and 𝜑!",!(!) is the angle of the 
furthest sheep on participant i’s side of the game 
space relative to corresponding ξy polar game space 
axis. 𝐶!",! is a fixed parameter the sets minimum 
preferred distance that a participant likes to approach 
a sheep, and 𝜀! and 𝜇! scale the force (rate) at which 
participant i minimizes the difference between the 
radial distance and radial angle of their sheepdog 
and the radial distance and angle of the furthest 
sheep from the center of the game space on their 
side of the game field, respectively. Finally, 𝐷!",! is 
a Heaviside parameter defined as 



 

 

𝐷!"! =
0, 𝜑!",!(!) ≤ 𝐶!",!
1, 𝜑!",!(!) > 𝐶!",!

 

 

(10) 

which results in the stable fixed point solution 
𝜃!,!"#$%& = 0, when all of the sheep on participant i’s 
side of the game space are within the participant’s 
maximum safe containment distance,  𝐶!",!. Thus, 
when all of the sheep on participant i’s side of the 
game space are within the region of containment, the 
radial orientation 𝜃!   approaches zero for participant i 
and their corresponding 𝑥! path is centered about ξy.  

Collectively, the task dynamic model of the (bi-
agent) sheepherding game can be written as follows, 

 
[Participant/Sheepdog 1]            (11) 
𝑦!−𝑏!!𝑦! − 𝜀! 𝑦! − (𝜑!",!(!) + 𝐶!",!) = 0  
𝜃! − 𝑏!!𝜃! − 𝜇! 𝜃! −   𝜑!",! ! 𝐷!",! =   0 
𝑥! + 𝛼!𝑥! + 𝛽!𝑥!! + 𝛾!𝑥!!𝑥! + 𝜔!!𝑥!

= 𝑥! − 𝑥! (𝐴 − 𝐵 𝑥! − 𝑥! !) 
𝛼! = 𝛿!(𝜑!",!(!)! − 𝐶!",! − 𝛼!)    

𝐷!"! =
0, 𝜑!",!(!) ≤ 𝐶!",!
1, 𝜑!",!(!) > 𝐶!",!

 

  
[Participant /Sheepdog 2]     
𝑦!−𝑏!!𝑦! − 𝜀! 𝑦! − (𝜑!",!(!) + 𝐶!",!) = 0 
𝜃! − 𝑏!!𝜃! − 𝜇! 𝜃! −   𝜑!",! ! 𝐷!",! =   0 
𝑥! + 𝛼!𝑥! + 𝛽!𝑥!! + 𝛾!𝑥!!𝑥! + 𝜔!!𝑥!

= 𝑥! − 𝑥! (𝐴 − 𝐵 𝑥! − 𝑥! !) 
𝛼! = 𝛿!(𝜑!",!(!)! − 𝐶!",! − 𝛼!)    

𝐷!"! =
0, 𝜑!",!(!) ≤ 𝐶!",!
1, 𝜑!",!(!) > 𝐶!",!

 

  
Importantly, not only does this model effectively 
capture the bimodal behavior exhibited by pairs in 
the experimental study, but it is also resistant to 
perturbations in the sheep movement and location 
and is able to spontaneously transition between the 
search and recover and oscillatory containment 
behavioral modes via a sheep distance dependent 
Hopf bifurcation process. Videos presenting 
example demonstrations and simulations of the 
model, as well as a real participant behavior can be 
viewed at: http://www.emadynamics.org/bi-agent-
sheep-herding-game/. 

5 CONCLUSION 

Our aim here was to provide a brief overview of 
how EMAD can be modeled and understood using a 
task dynamic framework. It is important to 
appreciate that the goal of dynamical modeling is 
not to perfectly simulate the exact trajectory or end 

state of system behavior, but to shed light on the 
structural relations and self-organizing processes 
that give rise to effective and robust behavior. 
Indeed, the power of a task dynamical model rests 
on its ability to validate hypotheses, generate 
testable predictions, and motivate future research 
questions. It is in this way that developing self-
organized task dynamic models have the potential to 
uncover the fundamental processes that shape and 
constrain human behavior in general. 
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