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Chapter 11

Symmetry-Breaking and the Contextual Emergence of

Human Multiagent Coordination and Social Activity

Michael J. Richardson∗ and Rachel W. Kallen

University of Cincinnati, USA

Here we review a range of interpersonal and multiagent phenomena that
demonstrate how the formal and conceptual principles of symmetry, and
spontaneous and explicit symmetry-breaking, can be employed to inves-
tigate, understand, and model the lawful dynamics that underlie self-
organized social action and behavioral coordination. In doing so, we
provided a brief introduction to group theory and discuss how symme-
try groups can be used to predict and explain the patterns of multiagent
coordination that are possible within a given task context. Finally, we ar-
gue that the theoretical principles of symmetry and symmetry-breaking
provide an ideal and highly generalizable framework for understanding
the behavioral order that characterizes everyday social activity.

1. Introduction

“. . . it is asymmetry that creates phenomena.”
(English translation) Pierre Curie (1894)

“When certain effects show a certain asymmetry, this asymme-
try must be found in the causes which gave rise to it.”
(English translation) Pierre Curie (1894)

Human behavior is inherently social. From navigating a crowed side-

walk, to clearing a dinner table with family members, to playing a compet-

itive sports game like tennis or rugby, how we move and act during these

social contexts is influenced by the behavior of those around us. The aim

of this chapter is to propose a general theory for how we might understand
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the emergence, stability, and dynamic organization of such coordinated so-

cial activity. In particular, we aim to delineate a theoretical framework for

understanding what creates and determines the behavioral patterns that

are possible within a given environmental or social context, one that is in-

different to the particulars of the behavioral phenomena in question and

can therefore provide a generalized account of the coordinated behavioral

activity that occurs across all manner of behavioral tasks. The theoretical

account being proposed is based on the conceptual and formal principles

of symmetry and the theory of symmetry-breaking, and is motivated by a

number of recent research findings and the famous words of Pierre Curie

(1894) cited above, the second of which is commonly referred to as Curie’s

Principle. In short, our aim is to demonstrate how the behavioral dynam-

ics and collective organization of multiagent coordination is defined by the

symmetries, asymmetries, and symmetry-breaking events of environmen-

tally situated social activity.

Before jumping headlong into the details of how symmetry and

symmetry-breaking can provide a theoretical account of what, why, and

when different patterns of multiagent behavioral coordination emerge, con-

sider the following example that many of us can identify with. Imagine an

individual at a wedding, seated at one of those circular and flawlessly set

dinner tables, with the glasses positioned in perfect symmetry around the

table. In this situation, the seated individual is often left with the question

as to which of the two glasses within reach is theirs–the glass to the right

or the glass to the left? That is, the individual, as well as the collective

group of individuals seated at the table, exist at the precipice of a right-

or left-glass state (much like Buridan’s Ass1 stuck between two identical

bales of hay). This dilemma is easily solved, of course, as soon as any one

individual at the table has the courage to grasp a glass. For instance, if

any individual chooses a glass to his or her right the collective order of the

group immediately collapses to a right-glass state, with every individual in

the group choosing the glass to the right. This is true even for those indi-

viduals not yet seated at the table, in that the symmetry-breaking act of

one individual’s glass selection specifies the behavioral choice for all current

1Named after the French philosopher Jean Buridan, the Buridan’s Ass paradox refers to
the situation where an Ass (Donkey) finds itself equidistant between two bales of hay and

because the Ass is continuously pulled in equal measure to both bales of hay is unable

to decide which bale of hay to move towards and eventually starves to death (unless, for
example, the Ass is right or left-legged, or there is more wind coming from the west or

east).
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and future individuals seated at the table.

This example highlights the deep and meaningful points that Pierre

Curie was attempting to make in the introductory quotes. The first is that

the order of behavior emerges from symmetry-breaking events. Here the

term order simply refers to the collective organization or observed pattern-

ing of a system’s behavior over time. Within the context of the “whose glass

is whose” dilemma, the selection of a specific glass by any one individual

operates to break the symmetric arrangement of the glasses as a whole

and, thus, defines the organization or pattern of the table’s group behav-

ior2. The second point, also highlighted in the above example, is that the

behavioral order (patterning) of coordinated social activity is determined

by the (a)symmetries that define an agent-environment task context. In

more general terms, this implies that the symmetry of the effect is written

in the symmetry of the causes that bring about that effect (Stewart and

Golubitsky, 1992/2011).

As we will explain in more detail below, by symmetries, we are referring

to the task-relevant agent and environmental properties that are equivalent

or invariant with respect to a given transformation. These properties could

refer to the physical or informational aspects of the task environment, the

biomechanical or perceptual-motor abilities of the co-acting agents, or the

agents’ intentional states, goals, or psychological dispositions. Accordingly,

although the focus of the current chapter is on the application of symmetry

principles for understanding the organizational structure that characterizes

social action and multiagent coordination, we foresee that the conceptual

and formal aspects of symmetry and symmetry-breaking can be employed

to understand all forms of human perception, action, and cognition. Why

then do we focus on social action? Well, for no other reason than the ideas

discussed here have emerged out of our work examining the behavioral

dynamics of social coordination and joint-action.

With this in mind, the chapter is structured as follows. In the first half

of the chapter we briefly detail the formal and theoretical concepts of sym-

metry and symmetry-breaking. Then, using several empirical examples, we

illustrate how the principles of symmetry and symmetry-breaking can be

employed to understand the dynamics and behavioral order of social, mul-

tiagent coordination. Finally, we conclude the chapter by proposing that

2The “whose glass is whose” dilemma was first described to the authors of this chapter
by Robert Shaw, who has also employed this example in his own theorizing about how

the principles of symmetry underlie human perception and action (Shaw, McIntyre and

Mace, 1974; Warren and Shaw, 1985).
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the formal and conceptual principles of symmetry and symmetry-breaking

provide a general theory for modeling and understanding the behavioral

dynamics (Warren, 2006) of social coordination and multiagent activity, as

well as human behavior in general.

2. Symmetry

Most of us have a good idea of what the term symmetry means, typically

defining symmetry as meaning some type of correspondence in the shape or

configuration of an image or object. Accordingly, people often refer to the

bilateral or mirror symmetry of the human face or body when defining the

term. Others often refer to numerous geometric shapes, such as a circle,

star, or octagon as having symmetry, stating how these shapes look exactly

the same when rotated or reflected in certain ways. Although this common-

place understanding of symmetry is fundamentally correct, the principle of

symmetry is one that applies to much more than the shapes or patterns

of objects and images. Indeed, the principle of symmetry is a much more

abstract concept that can be applied to understanding the regularity or or-

der of anything, from mathematical functions, to chemical compounds and

crystals, to quantum mechanics and the fundamental conservation laws of

physics.

To understand this more general notion of symmetry, we can define the

term symmetry as simply referring to an equivalence or invariance of some

kind, given some form of transformation. The vagueness of this definition

is deliberate, in that ‘some kind’ of equivalence or invariance and ‘some

form’ of transformation could stand for almost anything. For example, an

equivalence or invariance could refer to the fact that a square looks exactly

the same when rotated by 90 degrees or reflected about a midline axis, or

that a stack of three tennis balls in a cylindrical tennis ball container would

look the same if one permutes the order in which the tennis balls are stacked

on top of each other (the original and permuted tennis ball arrangements

would be indistinguishable from each other), or to use a more large scale

example (one fundamental to scientific inquiry), finding that the results

of an experiment conducted on Wednesday September 8th 2014 at 9 am

at the Psychology Department at the University of Cincinnati in Ohio,

USA, replicate the results obtained using the same experimental method

on Friday March 12th 2013 at 1 pm at the Psychology Department at

University of Auckland in New Zealand, which also replicate the results
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obtained from the Department of Cognitive and Information Sciences at

the University of California Merced, on Monday November 21st, 2012 at

5:30 pm.

As is the case in each of the previous examples, the central aspect of

what makes something symmetric, is whether the specific phenomena or

observable in question is indistinguishable with respect to a specific type or

set of transformations. With this more abstract definition of symmetry in

hand, one can also start to see how the symmetry of an object, phenomena,

or thing can be quantified, in that some object, phenomena, or thing may

have more or less symmetry than some other object, phenomena, or thing.

To use a common example, consider the geometric shapes of a circle and an

equilateral triangle. There are an infinite number of rotations and midpoint

reflections that leave a circle looking the same, whereas there are only

3 rotations and 3 reflections that leave an equilateral triangle the same

(see Figure 1). Therefore a circle has a larger, continuous set, or group,

of symmetries than an equilateral triangle, which only has a discrete set

symmetry transformations. A square also has a discrete set of symmetries,

8 to be exact: four rotations, two mirror reflections, and two diagonal

reflections. Therefore, a square also has a greater number of symmetries

than an equilateral triangle, but still much less than the symmetries of a

circle.

Fig. 1. Symmetries of a circle, equilateral triangle, and square. (left) A circle has an
infinite (continuous) number of rotations and reflections about center point axes that are
captured by the orthogonal group O(2). (middle) An equilateral triangle has 6 discrete

symmetries, three rotations = (0◦ or 360◦, 120◦, 240◦) and three reflections, that are

captured by the dihedral group, D3. (right) A square has 8 symmetries, 4 rotations
= (0◦ or 360◦, 90◦, 180◦, 270◦) and 4 reflections, that are captured by the dihedral group,

D4.
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2.1. Group theory

A conceptual understanding of symmetry is by itself a powerful tool for

understanding the order and regularity of nature, as well as the significant

role that symmetry plays in scientific investigation and explanation (Rosen,

1995, 1975/2012), and is an approach that we will employ in explicating

the role of symmetry and symmetry-breaking in the dynamics of social co-

ordination throughout this chapter. In many instances, however, adopting

a formal, quantitative approach to symmetry is necessary to uncover what

and why particular patterns or orders emerge and whether such patterns

of order characterize general principles of both ontological and phenomeno-

logical organization. The formal approach to symmetry is achieved by the

use of special types of sets, called groups, and the related theory of such

sets called Group Theory. In essence, groups provide a way of quantifying

the symmetry of something, whereby the symmetry group of an object,

phenomena, or thing corresponds to a closed set of transformations that

leave the system unchanged with respect to some defined property. More

specifically, a symmetry group is a set, G, of symmetry transformations

that together with a group operator (a binary rule of element combination)

satisfy the following four group properties:

(1) The group, G, includes an identity transformation (often denoted

as I and e), such that for every element, g∈ G, I·g = g·I = g. In

many instances, the identity transformation essentially corresponds

to the ‘do nothing’ transformation. For instance, a rotation by 0◦

(or equivalently by 360◦) corresponds to the identity transforma-

tion for an equilateral triangle or a square.

(2) The transformation elements in G are associative. That is, if g1,

g2 and g3 are elements of G, then (g1·g2)·g3 = g1·(g2·g3). That is,

regrouping the elements with respect to the group operator (but

leaving the order the same) doesn’t change the outcome. Note,

however, that groups do not have to be commutative.

(3) For each transformation element in G there exists a unique inverse,

such that for every element, g, in G, there exists a g−1, whereby

g·g−1 = g−1·g = I. For an equilateral triangle, for example, the in-

verse of the 120◦ rotation is a rotation by 240◦ (which is equivalent

to −120◦), such that performing both transformations is the same

as rotating the triangle by 0◦ (i.e., 120◦ + 240◦ = 360◦ = 0◦).

(4) For any two transformation elements, g1 and g2, in G, the product
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operation of g1 and g2 equals another element of G; the group is

closed. To use the equilateral triangle as the paradigmatic exam-

ple again, this means that for any combination of rotations and

reflections one performs, the result must be equal to one of the six

potential transformations in the group as a whole. For instance,

the outcome of rotating an equilateral triangle by 240◦ and then

flipping it about the vertical midline axis is equal to simply rotating

the triangle by 120◦.

There are many different types of symmetry groups that satisfy these

four properties, from finite, single element groups that contain only an

identity element, I, (i.e., trivial groups) to groups that contain an infinite

number of elements. As noted above, the symmetry group of a circle is

an infinite or continuous group and corresponds to the orthogonal group

O(2). The symmetry groups for an equilateral triangle and a square are

examples of finite groups and correspond to the dihedral groups D3 and

D4, respectively (note that a dihedral group, Dn, is the symmetry group

of an n sided polygon, such that the number of elements in, Dn, is 2n).

The above example of 3 tennis balls stacked in a cylindrical container is

also an example of a finite group and can be captured by the permutation

group S3, which means that there is n-factorial (3! = 3× 2× 1 = 6) ways of

indistinguishably rearranging the tennis balls in the container (see Figure

2).

The simplest way to verify whether a finite set of symmetry transforma-

tions forms a group is to compose the transformations into a multiplication

table (sometimes referred to as a group table)3. To illustrate this, we have

written out the multiplication table for the permutation group S3 in Figure

2, which as just stated above can be used to capture the symmetry group

of 3 tennis balls stacked within a cylindrical container (or any other system

that has three elements that are symmetric with respect to permutation).

From this table, one can easily determine that the six possible permuta-

tions of S3 form a group because: (i) there is an identity element; (ii) the

composition of the elements is associative; (iii) every element has an unique

inverse specified by the fact that there is exactly one identity element in

each row and column; and (iv) there are no empty cells in the table and

thus the set is closed.

3For infinite or continuous groups one needs to formulate a general rule to express the

closed composition of group elements (Rosen, 1975/2012).
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Fig. 2. An illustration of how the symmetry group S3 can capture the spatial transfor-
mations (permutations) of three identical objects, in this case three tennis balls stacked

together in a cylindrical container. (top panel) The six different permutations captured

by S3 and the corresponding multiplication table. As per convention, the composition is
column first then row, such that multiplication involves the row element on the left and

the column element on the right of the group operator. (bottom panel) An example of

how replacing one of the tennis balls with a different, non-identical ball (i.e., a cricket
ball) reduces the symmetry group of the three objects to the permutation group S2,

which is a proper subgroup of S3.

Figure 2 also illustrates the notion of a subgroup. A subgroup is a

subset of elements from a group, that is itself a group (meets the four group

properties), and includes the group’s identity element. The full group and

the group’s identity element are always trivial subgroups of a group, with

the former also termed an improper subgroup. All other subgroups of a

group are non-trivial, proper subgroups. Finally, the number of elements

or order of any subgroup must be a divisor of the number of elements that

make up the higher order group. With respect to the permutation group

S3, there are two other S2 subgroups in addition to the one illustrated in

Figure 2, (1,2,3), (1,3,2), namely (1,2,3), (3,2,1) and (1,2,3), (2,1,3). The

alternating (cyclic) subgroup (1,2,3), (2,3,1), (3,1,2) denoted by A3 is also

a subgroup of S3.

A more comprehensive review of Group Theory and symmetry groups

is beyond the scope of this chapter (see Rosen, 1995, 1975/2012; Weyl,

1952, for excellent overviews of group theory). We introduce the basic



September 17, 2015 18:39 World Scientific Review Volume - 9in x 6in ContextualityBook page 237

Symmetry-Breaking in Multiagent Coordination 237

tenets of Group Theory here, however, as we will, to a limited extent,

employ the symmetry group formalism to elucidate the role of symmetry in

some of the examples employed later in this chapter. We also feel that it is

important to emphasize the significance of Group Theory for understanding

and defining the symmetry of something, including how the symmetries of

one thing are related to the symmetries of something else. Indeed, Group

Theory cannot only be used to formally define the symmetries of an object,

phenomena, or thing, but can also be employed to determine whether the

symmetries of two or more different objects, phenomena, or things are

equivalent (see Figure 3). Accordingly, one can use symmetry groups to

generalize a theoretical understanding of the ordered relations that exist or

emerge across completely different objects, phenomena, or things, so long

as those objects, phenomena, or things are defined by the same symmetry

group or by an isomorphic or homomorphic symmetry group (i.e., when the

symmetry groups can be shown to have corresponding structures).

3. Symmetry-Breaking

An aspect of symmetry that is often overlooked is that symmetry implies

asymmetry. More specifically, a symmetry or symmetry transformation

can only be defined with respect to something that is not symmetric (i.e., a

gauge that captures when a transformation has occurred). That is, equal-

ity can only be defined with respect to inequality; invariance can only be

defined in relation to variance. Accordingly, symmetry and asymmetry

are duals (Kugler and Shaw, 1990; Shaw, Kugler and Kinsella-Shaw, 1990),

(Shaw et al., 1974; Warren and Shaw, 1985). Note that complete symmetry

is therefore equivalent to complete asymmetry, both of which correspond to

a complete lack of something, to a nothing or an absolute absence of differ-

entiation and discrimination. In order to fully comprehend this later point,

imagine if all the matter and energy in the universe was maximally and

evenly distributed throughout the universe (the universe was in a state of

maximum entropy). In this state of perfect symmetry the universe would

look equivalent to an observer no matter what point in space (or time)

the observer was located, leaving the observer simultaneously anywhere,

everywhere, and nowhere.

To use a more tangible example, consider a perfect sphere of uniform

color floating in space. The symmetries of such a sphere are the continuous

(infinite) set of rotations and reflections about axes that pass through the

sphere’s center and are captured by the orthogonal group O(3). The rota-
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Fig. 3. An example of group isomorphism. (top panel) The isomorphic relationship
between the Dihedral group, D3, and the permutation group, S3. The arrows reveal the

one-to-one correspondence between the six elements in each group. (middle panel) The
isomorphic group tables. (bottom panel) Illustration of the isomorphic relationships be-

tween two proper subgroups of D3 and S3. The first between the 2-order cyclic subgroups

Z2 and S2, and the second between the 3-order cyclic subgroups Z3 and A3.

tional symmetry of this uniform sphere floating in space, however, means

that one is unable to tell if the sphere is stationary or spinning around

a center axis point. Anyone who has ever created a uniform grey sphere

within an empty 3-dimensional graphics environment (i.e., openGL, or a

modern graphics programming engine such as Unity 3D) has probably ex-

perienced this first hand. Unless one adds a non-uniform texture to the

sphere, one is unable to perceive whether the sphere is still or spinning. As

illustrated in Figure 4, however, as soon as a non-uniform texture is added

to the sphere the rotational symmetry of the sphere is broken and one can

immediately perceive whether the sphere is spinning or not. In fact, the

addition of a symmetry-breaking texture means that one is also able to



September 17, 2015 18:39 World Scientific Review Volume - 9in x 6in ContextualityBook page 239

Symmetry-Breaking in Multiagent Coordination 239

Fig. 4. Illustration of how the continuous rotational symmetry of a sphere results in
any rotational movement being undetectable (essentially invisible), unless a non-uniform

(symmetry-breaking) texture is added. The texture induced break in symmetry creates

information about the speed and direction of spherical rotation. (top panel) A sequence
of three fixed interval (time, t) images of a uniform rotating sphere. In each image, the

sphere looks identical; the rotating sphere appears to be stationary. (bottom panel) A

sequence of three fixed interval images of a non-uniform, textured rotating sphere. In
these images, the sphere’s rotational direction is apparent. The images were created using

Unity3D. The dashed arrow represents the direction of rotation. The white light/sun

symbol and emanating lines indicate the direction of the light source employed. The
perspective shape in the top right of each image indicates the Euclidean x, y, z directions

of the 3-dimensional graphics environment.

perceive what axis the sphere is rotating around, as well as the speed of

rotation. The break in symmetry, therefore, creates information about the

sphere’s behavioral order, in this case information that specifies its speed

and direction of rotation. Note again the duality of symmetry and asymme-

try that this implies. The symmetry-breaking texture creates information

about a local transformation (variance), the sphere’s direction and speed

of rotation, as a direct function of the structural invariance, or symmetry,

of the spherical shape (i.e., its constancy of shape) and the global invari-

ance of the background environment4. Again, symmetry and asymmetry,

4The deep relationship between symmetry, symmetry-breaking and information, includ-

ing how symmetry and asymmetry (variance and invariance) underlie the perception of
environmental objects, surfaces, and events are not discussed here. These relationships,

however, are fundamental tenets of the Ecological approach to perception and the theory
of direct perception proposed by James J. Gibson (1979) and subsequently development
by Shaw and Turvey and others (see e.g., Michaels and Carello, 1981; Shaw, McIntyre

and Mace, 1974; Shaw and Pittenger, 1978; Shaw, Turvey and Mace, 1982; Turvey and

Shaw, 1999; Warren and Shaw, 1985). Recent work by Li, Sawada, Shi, Steinman and
Pizlo (2013) and Pizlo et al. (2014) has also demonstrated the importance of symmetry

for a computational approach to shape and object perception.
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invariance and variance go hand-in-hand.

The duality of symmetry and asymmetry and the knowledge that com-

plete and absolute symmetry corresponds to the absence of differentiation

(the lack of something), implies that the existence of order is dependent on

symmetry being broken. This is what Pierre Curie meant by the statement,

“asymmetry [broken symmetry] is what creates phenomena” (see Brading

and Castellani, 2003; Castellani, 2003, for a more detailed discussion of

Pierre Curie’s symmetry arguments). Indeed, any symmetry that can be

perceived, observed or measured only exists as a result of a break in sym-

metry (and vice versa). Symmetry-breaking is therefore fundamental for

the emergence, detection, and manifestation of structure, organization, and

behavioral order. It is imperative that one understands, however, that the

terms broken symmetry and symmetry-breaking do not refer to the absence

of symmetry. Rather these terms refer to the reduction or redistribution of

symmetry with respect to some higher order5 (often “hidden”) symmetry

(Castellani, 2003; Rosen, 1995; Stewart and Golubitsky, 1992/2011). In-

deed, symmetry-breaking is entailed by symmetry and reveals symmetry,

as the sphere example highlights. With that said, we can now detail the

two general ways in which symmetry breaking can occur: spontaneously

and explicitly.

3.1. Spontaneous symmetry-breaking

Spontaneous symmetry-breaking refers to the situation where the process,

parameter, or event that breaks the symmetry of a system is entailed by

the symmetry of the system itself (assuming one defines the system in

question appropriately). As implied by Curie’s Principle, the symmetry of

a symmetry-breaking effect is defined by the symmetry of the causes that

bring about that effect. Employing an example from classical physics, con-

sider a circular rod made of relatively rigid foam that is of sufficient length

that one could apply a compressing force to the two ends of the rod with

one’s hands. The foam rod will remain straight, invariant to all rotations

around its midline axis, when low compression forces are applied. However,

with a critical magnitude of force, this symmetric equilibrium state will be-

come unstable such that any magnitude of force above this critical point

will cause the rod to buckle (bend). That is, the continuous rotational sym-

5Here the term order is used in reference to the number of elements in a symmetry group.

That is, the number of symmetry transformations that leave an object, phenomena or
thing unchanged.
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metry of the rod will break, with the rod adopting a new asymmetric state

that is no longer invariant to all rotations about its midline axis. Impor-

tantly, however, the spontaneous nature of the symmetry-break means that

the asymmetric state realized by the rod will be symmetric with respect to

a specific rotation and will be one of an infinite number of possible states

(i.e., there is an infinite number of directions the rod could have buckled

into) that are related to each other via a rotation. It is in this way that

spontaneous symmetry-breaking reflects a redistribution of symmetry (see

e.g., Castellani, 2003; Stewart and Golubitsky, 1992/2011; Strogatz, 1994,

for a more detailed discussion of this and similar physical phenomena).

Fig. 5. Eq. (1) plotted as a potential function for (left) a > 0 and (right) a < 0. When
a > 0 the system has one stable solution at x = 0, which is invariant with respect to the

system’s global (higher order) symmetry, namely inversion (i.e., x→ −x). When a < 0
the system’s local symmetry is broken with two stable solutions emerging at x = ±

√
a

that are not invariant with respect to the global system of Eq. (1) (see text for more

details).

Regarding dynamical laws (equations of time-evolving processes), a

spontaneous symmetry-break corresponds to solutions of a symmetric law

that are not invariant with respect to that symmetry. Take the dynamical

(differential) equation

ẋ = −ax− x3 (1)

This system has global symmetry with respect to inversion (i.e., x→ −x),

which can be represented by the cyclic group, Z2. As illustrated in Figure

5, this global (higher order) symmetry is easily discerned when one plots

Eq. (1) as a potential function (imagine reflecting the function about the

V axis, it would still look the same). When a > 0, this global symmetry is

locally preserved by the stable fixed-point solution at x = 0. Yet, as a is

scaled from a positive real number to a negative real number, the local sym-
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metry of the system breaks (a bifurcation occurs), with the global, higher

order symmetry of the system being spontaneously redistributed across two

new stable states. In more formal terms, the stable solution at x = 0 be-

comes unstable, and two new stable states emerge at x = ±
√
a, with these

two minimal energy states (solutions to Eq. (1)) having less symmetry

than the system itself. Of significance, however, the global system remains

invariant to inversion even when the system has two differential solutions

(broken symmetry) at the local level.

The nonlinear phase transition that characterizes the emergence of

Rayleigh-Bénard convection provides another good example of spontaneous

symmetry-breaking. In this phenomenon, a relatively thin layer of viscous

fluid (e.g., oil) in a horizontal container is heated from below. Applying heat

from below creates an energy gradient between the top and bottom of the

container and when the energy gradient is low, random collisions between

the individual molecules of the fluid are sufficient to dissipate the energy

gradient. However, above a critical energy gradient, random collisions be-

tween fluid molecules can no longer dissipate the flow of energy and the ran-

dom motion of the fluid’s molecules becomes macroscopically ordered into

convection rolls (rotating cells of fluid motion that roll in alternating clock-

wise and counter-clockwise directions). Figure 6 provides an illustration of

the phenomena. Here, the spontaneous symmetry-break can be understood

in two ways. First, analogous to Eq. (1), the local symmetry of the system

is redistributed from a single homogeneous state to one of two differential

states of ordered convection roll motion; a horizontal clockwise/counter-

clockwise state or a horizontal counter-clockwise/clockwise state. A sec-

ond, more conceptual understanding of this spontaneous symmetry-break

concerns the organization of the fluid molecules. Prior to the critical point

transition, the motion of the fluid’s molecules is homogeneously random and

unordered, whereby the fluid looks the same from any point of observation.

As such, the system is in a high state of symmetry, invariant with regard to

spatial and temporal translations. After the critical point transition, how-

ever, the ordered, non-homogeneous motion of the fluid’s molecules gives

rise to a macroscopic behavioral order that has fewer spatial and temporal

symmetries; only for very specific spatial and temporal translations does

the fluid look the same.

In addition to being a real world analogy of the kind of state bifurcation

defined by Eq. (1), the Rayleigh-Bénard convection example highlights how

more symmetry is synonymous with less behavioral organization and less
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Fig. 6. An illustration of spontaneous symmetry-breaking and Rayleigh-Bénard con-

vection. At a critical energy gradient the molecules of a viscous fluid spontaneously

transition from a highly symmetric state of homogeneous random motion to a less sym-
metric state of non-homogeneous convection roll motion (see text for more details).

symmetry is synonymous with more behavioral organization. Specifically,

the state of highly organized convection rolls has less symmetry than the

unordered, yet highly symmetric state of random motion that character-

izes the system prior to the break in symmetry. The inverse relationship

between symmetry and behavioral organization is, of course, intimately re-

lated to the idea that symmetry-breaking creates phenomena and, as will

be argued here, is key to understanding the behavioral order of social co-

ordination.

As a final example of spontaneous symmetry-breaking, take the phenom-

ena of self-assembled magnetic surface swimmers uncovered by Snezhko,

Aranson and Kwok (2006); Snezhko, Belkin, Aranson and Kwok (2009).

Images of the basic phenomena are displayed in Figure 7 and depict the

self-propelled snake or worm like structures that emerge from a collection

of dispersed magnetic, nickel micro-particles in the presence of an alternat-

ing magnetic field. The emergence of these self-propelled magnetic snakes

is highly robust and can be achieved using a large collection of tiny nickel

spheres (magnetic micro-particles) suspended on top of water via surface

tension within a glass beaker. When a vertical alternating magnetic field is

generated around the beaker using a pair of Helmholtz magnetic coils, the

snake like structures emerge due to the collective alignment of the micro-
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particles to the alternating magnetic field and local surface deformations

that result from this alignment response. More specifically, as the nickel

micro-particles become aligned with the external magnetic field they pro-

duce local deformations on the surface of the water, such that neighboring

particles begin to interact and influence each other. These local interac-

tions bring the particles together into segmented chains (with the resulting

magnetic moment pointing along the length of the resulting chain), a pro-

cess that is further promoted by a wave-like motion that emerges along the

particle structure (Snezhko et al., 2006, 2009).

Initially, and at low magnetic field frequencies (i.e., below 100 Hz), the

snake like structure is more-or-less held in place by four symmetric hydro-

dynamic vortices that emerge at opposite ends of the snake. In essence,

these hydrodynamic vortices operate like miniature engines, pumping liq-

uid along and away from each end of the snake in opposite directions.

Beyond a higher, critical frequency, however (i.e., at and above 100 Hz),

the symmetry of these hydrodynamic engines becomes unstable and spon-

taneously breaks (the energy flow at one end of the snake becomes stronger

than the energy flow at the other end) and the snake transitions into a

self-propelled swimmer. That is, the behavioral organization of the snake

transitioning from balanced, non-translational movement in the x-y surface

plane, to translational movement in the x-y surface plane. Essentially the

magnetic snake goes from being a symmetric, headless-tailless creature, to

one that possesses a directional movement oriented front-end and back-

end. Accordingly, when one watches the self-propelled swimmers in action

the structural asymmetry of the snake’s behavior almost appears to be in-

tentional or end-directed (see beim Graben, 2014, for a discussion of the

perceived intentionality of magnetic surface swimmers).

Although the behavior of the magnetic snakes is by no means inten-

tional, the self-organized emergence of these self-propelled structures, like

Rayleigh-Bénard convection rolls, provides another clear and rather com-

pelling demonstration of how increases in the organization of system behav-

ior is entailed by symmetry-breaking events. Again, breaks in symmetry are

synonymous with increases or changes in behavioral order. The beauty of

the magnetic snake example is compounded by the fact that the behavioral

order that results from the break in the symmetry of the hydrodynamic vor-

tices can also be controlled by adding a glass bead to the system (see Figure

8 and the right images in Figure 7). We discuss this controlled symmetry-

break in more detail in the next section. We mention it here, however, as
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Fig. 7. Self-Assembled Magnetic Surface Swimmers. (left) wide and (middle) close-up
top down views of self-propelled surface swimmers (magnetic snakes) that spontaneously

emerge on the surface of a liquid (water) from a collection of magnetic, nickel micro-

particles energized by an alternating magnetic field. The self-propelled snakes emerge as
a result of spontaneously breaking the symmetry of hydrodynamic surface flows produced

at the ends of the snake like structures. (right) A bead-snake hybrid swimmer that
emerges in a controlled manner due to the bead-head explicitly breaking the symmetry

of the surface flows produced by the alternating magnetic field. See text, as well as

Figure 8 for more details. The images and description provided here were adapted
and paraphrased from Snezhko et al. (2009), and with the permission of A. Snezkho

from the videos and information available at the time this chapter was written from

http://mti.msd.anl.gov/highlights/snakes/experiment.html.

it leads us to consider the question of how systems that undergo sponta-

neous symmetry-breaking ‘choose’ which of the many possible asymmetric

states available is actually actualized. More specifically, why does the rod

buckle this way rather than that way? What determines whether the sys-

tem defined by Eq. (1) moves from the previously stable state at x = 0 to

one of the new stable solutions at x = +
√
a or x = −

√
a? What causes

the convection rolls to be ordered in horizontal clockwise/counter-clockwise

state or a horizontal counter-clockwise/clockwise state? And, why does a

magnetic snake or self-propelled surface swimmer move in one direction

versus the other (how does the snake choose which end is the ‘front’ and

which end is the ‘back’)? The answer to this question is rather simple:

some form of asymmetry is required in order for the system to ‘choose’.

This asymmetry could be extremely small and for a lot of physical sys-

tems is determined stochastically via by a small random fluctuation (i.e.,

noise). For instance, the appearance of the clockwise/counter-clockwise

or counter-clockwise/clockwise state during Rayleigh-Bénard convection is
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typically determined by the amplification of a small random fluctuation in

the motion of the oil at the transition point. Similarly, for the magnetic

surface swimmers, small differences in particle clustering and composition,

or stochastic fluctuations in the strength of the hydrodynamic vortices at

each end of the snake quickly amplify as one approaches or moves past the

symmetry-breaking, bifurcation point (i.e., at or above the critical 100 Hz

frequency of the alternative magnetic current), pushing the snake into one

of the two possible directions of propulsion.

As is the case with the magnetic swimmers, however, it is also important

to appreciate that the asymmetries that determine one behavioral state or

pattern over another need not always be random or stochastic. On the

contrary, the direction or state selected during a spontaneous symmetry-

break can also be the result of a non-random perturbation or pre-existing

asymmetry or bias (Hegstrom and Kondepudi, 1990; Kondepudi and Gao,

1987). Again, such asymmetries are often very small and in some instances

may be non-obvious or appear trivial. However, the fact that non-random

perturbations or system biases can and often do influence what stable state

or behavioral pattern is observed following a spontaneous break in symme-

try, means that such behavioral states cannot only be controlled, but can

also be intentionally induced.

3.2. Explicit symmetry-breaking

Explicit symmetry-breaking refers to a break in symmetry that is due to

a process, parameter, or event not entailed by the global or higher or-

der symmetry of the system (Castellani, 2003). Such symmetry-breaking,

sometimes called induced symmetry-breaking (Stewart and Golubitsky,

1992/2011; Turvey, 2007), can originate for different reasons and in some

instances can break the symmetry of a system in such a way that it

makes it impossible to know what underlying symmetry has been broken

(the global or higher order symmetry becomes hidden). The outcome of

such symmetry-breaking, however, is essentially the same as spontaneous

symmetry-breaking in that explicit symmetry-breaking can also create phe-

nomena and bring about greater levels of behavioral order.

As mentioned above with regard to the magnetic swimmers, and illus-

trated in the right images of Figure 7 and in the sequence of images in

Figure 8, breaking the symmetry of the hydrodynamic vortices (surface

flows) that emerge at each end of the self-assembled particle chain can be
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Fig. 8. A series of six static images that illustrate the controlled emergence and swim-
ming behavior of a bead-snake hybrid surface swimmer. As noted in the text and

in Figure 7, the bead-snake hybrid swimmer emerges due to the bead-head explicitly

breaking the symmetry of the surface flows produced on the surface of liquid water by
an alternating magnetic field. The images and description provided here were adapted

and paraphrased from Snezhko et al. (2009) and with the permission of A. Snezkho
from the videos and information available at the time this chapter was written from

http://mti.msd.anl.gov/highlights/snakes/experiment.html.

controlled by adding a glass or polystyrene bead to the system. As the

snake like particle structure emerges, the bead becomes attached to one

end of the snake (forming a bead-snake hybrid) and, in turn, suppresses

the vortex flow at that end of the snake. The result is an uncompensated

energy flow directly out of what is now the bead-snake’s tail end (i.e., the

non-bead end), which propels the bead-headed swimmer forward. With

respect to the current discussion, the bead explicitly breaks the symme-

try of the hydrodynamic vortices and induces a stable direction to the

swimmer’s translational movement. Interestingly, the bead can be added

both before or after a snake emerges and, moreover, can operate to cre-

ate a self-propelled magnetic swimmer from a stationary snake, even when

the alternating magnetic field is below the critical self-propulsion threshold

that characterizes the spontaneous symmetry-breaking instability (Snezhko

et al., 2009). In short, by explicitly inducing an asymmetry in the system’s
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hydrodynamic surface flows, the bead both creates and instills a more com-

plex and structured level of behavioral organization, one that is even more

robust and appears even more alive and intentional than that self-propelled

behavior that results from the spontaneous break in symmetry.

As a second example of explicit symmetry-breaking, consider the situ-

ation in which some imperfection parameter is imposed on a system. To

use an example that we will return to later on in this chapter, lets con-

sider the rhythmic coordination that occurs between the oscillatory leg

or arm movements of two visually coupling individuals. The dynamics of

such coordination are synonymous with that of a pair of coupled oscilla-

tors (Schmidt, Carello and Turvey, 1990; Schmidt and Turvey, 1994), and

exhibit a collective state that can be defined by the equation

φ̇ = ∆ω + β sin(φ) (2)

where φ and φ̇ are the relative phase and change in relative phase of the

two oscillatory movements, respectively6. β sin(φ) defines the strength of

the between-movement coupling, and ∆ω is a detuning or imperfection

parameter that equals the difference in the natural frequency of the two os-

cillatory movements (Cohen, Holmes and Rand, 1982; Schmidt, Bienvenu,

Fitzpatrick and Amazeen, 1998). As can be seen from inspection of Fig-

ure 9, in which Eq. (2) is plotted as a potential function for −4 < φ < 4,

when ∆ω = 0 the system is symmetric with a stable solution at φ = 0,

which corresponds to a stable inphase relative phase relationship. Namely,

when the two oscillatory movements have the same natural frequency (are

symmetric) the solution to the system is spatially symmetric and invariant

with respect to inversion (i.e., φ → −φ). However, when ∆ω 6= 0, the

symmetry of the system is broken–the function tilts and the stable solu-

tion becomes weaker and moves away from φ = 0 as |∆ω| increases, such

that +φ 6= −φ. With regard to a physical system of coupled oscillators

or interpersonal rhythmic limb movements, the most significant effect of

this explicit symmetry-break is a relative phase lead/lag, where the oscil-

lator or movement with the faster natural frequency leads the oscillator or

movement with the slower natural frequency (the synchronous relationship

between the two oscillators is also less resistant to perturbations and sys-

tem noise). Accordingly, when ∆ω 6= 0, the deviation from perfect inphase

6The collective behavior of interpersonal rhythmic coordination is actually best defined
by an extended version of Eq. (2), known as the Haken, Kelso, and Bunz (1985) or HKB

equation (Haken, Kelso and Bunz, 1985), which can account for antiphase coordination,

as well as inphase coordination.
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coordination maps onto a differential relation that specifies an identity for

each oscillatory movement (i.e., oscillator 1 is different form oscillator 2).

There is, of course, still a local symmetry operation that leaves the system

invariant, −(−φ), which is essentially the identity transformation. Fur-

thermore, the higher order symmetry that is broken when ∆ω 6= 0 can

be identified by the fact that the (local) stable solutions for ∆ω < 0 and

∆ω > 0, when |∆ω| < 0 = ∆ω > 0, are qualitatively equivalent and still

related by a spatial inversion (i.e., mirror reflection).

Fig. 9. Eq. (2) plotted as a potential function when ∆ω = −.35, 0, and .35 from left to
right, respectively (β = 1). When ∆ω = 0 the system has one stable solution at φ = 0,

which is invariant with respect to the system’s global (higher order) symmetry, namely

inversion (i.e., φ→ −φ). When ∆ω 6= 0, however, the system’s local symmetry is broken
with the function titling and the stable solution moving away from φ = 0 (see text for

more details).

Clearly, the increase in behavioral order that results from the imper-

fection parameter, ∆ω, is minimal. However, as we will discuss later, suf-

ficiently large increases in ∆ω cannot only result in a differential leader-

follower relationship between co-actors performing a rhythmic movement

task (Schmidt and Turvey, 1994; Richardson, Marsh, Isenhower, Good-

man and Schmidt, 2007b), but can also result in more complex patterns

of behavioral coordination to emerge between co-actors, including inter-

mittent coordination (Schmidt and O’Brien, 1997; Richardson, Marsh and

Schmidt, 2005) and multirhythmic coordination (Washburn, Coey, Romero

and Richardson, 2014). Before detailing this, as well as other examples of

how symmetry-breaking influences the structure of social coordination and

multiagent activity, let us first review a number of key points that need to

be noted in regard to explicit symmetry-breaking.

First, as both of the above examples highlight, an explicit symmetry-

break can occur when an introduced or pre-existing asymmetry, imper-

fection, or differential constraint operates to restructure the symmetry of

a system. With this in mind, let us restate Curie’s principle again: the
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(a)symmetry of an effect is defined by the (a)symmetries of the causes that

bring about that effect.

Second, nearly all natural or biological systems include asymmetries or

imperfections, in that even those systems that one considers to be sym-

metrical are at best ‘nearly symmetrical’ or only symmetrical with regard

to some idealized or abstract realization of the system. For instance, the

human body or face is never perfectly symmetrical, but are close enough

that we can consider them as having bilateral or mirror symmetry. Not all

of these imperfections or pre-existing asymmetries result in a functionally

significant redistribution of symmetry and therefore have little to no effect

on the behavioral order expressed. The key is identifying what, when, and

how these induced or pre-existing asymmetries or component imperfections

operate as explicitly symmetry-breaking factors to restructure or reorder

the behavior of a system in a behaviorally relevant and functional manner.

Finally, the parameters that one considers to be explicit symmetry-

breaking factors at one spatial or temporal scale, or level of description,

may reflect the occurrence of a spontaneous symmetry-break at another

scale or level of description. Take the example of the compressed rod.

When the rod spontaneously buckles for the first time, randomly actual-

izing one of the infinitely many possible asymmetric stable states, a bias

is introduced into the system, such that future compressions of the rod

will likely result in the same (or similar) buckled state. The implication

is that explicit symmetry-breaking can reflect a cascade of spontaneous

symmetry-breaks. The highly differentiated and imperfect universe we ex-

ist in is a perfect example of this. So is the high diversity of human physical,

cognitive and interpersonal capabilities, and dispositions. Consistent with

our discussion at the end of the previous section on spontaneous symme-

try breaking, note that small asymmetries that result from spontaneous

symmetry-breaking can also significantly bias a system towards specific

asymmetric states. To use a less trivial example than a buckling rod, con-

sider the possibility that the life-dependent preferences in the chirality (i.e.,

left and right-handedness or mirror symmetry) of molecular and living sys-

tems, including human beings, may have been induced by biases established

by spontaneous symmetry-breaking events at the atomic or quantum levels

(Hegstrom and Kondepudi, 1990).
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4. Symmetries of Multiagent Coordination

Hopefully the first half of this chapter has provided a sufficient overview

of how the theoretical principles of symmetry and symmetry-breaking pro-

vide a powerful and highly generalizable approach for understanding the

creation and behavioral (re)order of dynamic phenomena. Armed with this

understanding, our focus now turns to describing how these same princi-

ples can be employed to investigate, understand, and identify the behavioral

order that characterizes multiagent coordination and social action. More

specifically, we review a range of different interpersonal and multiagent

phenomena that demonstrate how the formal and conceptual language of

symmetry and symmetry-breaking provides a general framework for inves-

tigating the processes that operate to self-organize the behavioral dynamics

of coordinated social activity, and, moreover, how identifying the symme-

tries and symmetry-breaking factors that define the behavioral order of a

particular task or multiagent goal allow us to better understand and un-

cover the dynamical laws that shape everyday social interaction.

4.1. Dynamics of solo- vs. joint-action selection

A good starting place for a discussion of how symmetry and symmetry-

breaking operate to define the patterns of coordinated multiagent activ-

ity is to consider the behavioral dynamics that characterize the seemingly

simple transition between solo and joint action, such as when a pair of

co-actors go from moving objects alone to moving or passing objects with

or to one another. This action selection process is common to all manner

of multiagent task contexts, from completing puzzles and Lego structures

together with a friend, to loading or unloading a dishwasher with a fam-

ily member, to moving office furniture from one location to another with

a co-worker. Largely independent of the objects, end-effectors, or agents

involved, this action selection process reflects a division between two qual-

itatively different behavioral modes, whereby socially situated individuals

come to organize their behavior with respect to the ‘decision’ of whether to

act alone or together with another individual. Accordingly, solo-action and

joint-action reflect generic modes of a multiagent system. More specifically,

they represent general order parameters7 of a multi-agent system.

7The term order parameter is taken from the field of synergistics (Haken, 1983) and

corresponds to the collective state variable(s) with which the behavioral order of a multi-
degree-of-freedom dynamical system is defined.
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It is important to emphasize that these two collective modes of be-

havior characterize orthogonal (opposing) directions of system order, both

conceptually and physically, in that co-acting individuals cannot perform

both modes simultaneously. Indeed, one cannot act together with another

individual and at the same time act on their own; you can either pass an

object to another actor or move it on your own; similarly, you can either

lift an object on your own or with another individual. This point may at

first seem self-evident, even trivial. However, it is the orthogonal nature

of these modes, whether the specific modes relate to object passing, object

moving, or any other bi-ordinal behavior for that matter, that define the

symmetry and the symmetry-breaking bifurcations that characterize the

dynamic ordering and reordering of solo- vs. joint-action.

To understand how, one need only recognize that orthogonal or opposing

modes of behavior tend to interact in a mutually destructive (or construc-

tive) manner, whereby the existence and attractive strength of the two

modes covaries. Accordingly, if such modes are represented as different or-

der parameters, for instance as collective variables, ξ1 and ξ2, respectively,

then the topology of these modes in task space corresponds to two per-

pendicular axes (i.e., two orthogonal axes crossing to form a 2-dimensional

task space). Of particular significance, is that the symmetry of this 2-

dimensional task space is isomorphic with the symmetry group of a square,

namely the symmetry group D4. Better yet, it has been shown previously

(Haken, 1991, 1983; Kondepudi, 1989) that the dynamics of a system with

this kind of D4 symmetry can be captured using a generic set of differential

equations that take the form

ξ̇1 = λ1ξ1 −Bξ2
2ξ1 − C(ξ2

1 + ξ2
2)ξ1 (3)

ξ̇2 = λ2ξ2 −Bξ2
1ξ2 − C(ξ2

2 + ξ2
1)ξ2

where B and C are positive constants that ensure that the interaction be-

tween ξ1 and ξ2 is mutually destructive (for most purposes, one can fix B =

C = 1), and λ1 and λ2 are parameters that determine the growth rates of

the amplitudes of ξ1 and ξ2, when ξ1 and ξ2 are close to zero. One should

note that the existence of ξ1 or ξ2 as a behavioral mode or state is depen-

dent on λ1 and λ2 being greater than zero, respectively. In other words, ξ1
and ξ2 only increase from a state equal to zero when their corresponding λ

parameter is positive (Frank, Richardson, Lopresti-Goodman and Turvey,

2009; Haken, 1991).

Before detailing how the symmetries of this system entail the behav-



September 17, 2015 18:39 World Scientific Review Volume - 9in x 6in ContextualityBook page 253

Symmetry-Breaking in Multiagent Coordination 253

ioral dynamics associated with transitions between solo- and joint-action

behavior, let us first highlight the essential properties of this system. To

start with, the D4 symmetry of the dynamical system is visible if one plots

its phase portrait when λ1 = λ2 > 0 (see Figure 10, top left). In this case,

there are four stable fixed points8,

ξ1,st = ±
√
λ1

C
, ξ2,st = 0 (4)

and

ξ1,st = 0, ξ2,st = ±
√
λ2

C
(5)

symmetrically defined at positive and negative points along each task axis.

This symmetry, however, is broken when λ1 6= λ2. This can be seen from

an inspection of the middle and right phase portraits of Figure 10. For

moderate differences between λ1 6= λ2, the change in symmetry is quanti-

tative rather than qualitative. Specifically, when λ1, λ2 > 0, but λ1 < 2λ2

or λ2 < 2λ1 then the fixed points defined by Eq. (4) and Eq. (5) are both

stable, but are of different relative strengths (as in Figure 10, top and bot-

tom middle). For example, when λ1, λ2 > 0 and λ1 < 2λ2 the stability of

the fixed point attractors defined by Eq. (4) is greater than the stability of

the fixed points defined by Eq. (5).

Of much more quantitative significance, is the spontaneous symmetry-

break that occurs when λ1, λ2 > 0, and λ1 > 2λ2 or λ2 > 2λ1, whereby

the fixed points defined by Eq. (4) or Eq. (5), respectively, become saddle

points, leaving stable states only along one system axis (as illustrated in the

top and bottom right phase portraits of Figure 10)9. In particular, when

λ1, λ2 > 0 and λ2 > 2λ1, the fixed points along ξ1, defined by Eq. (4),

become unstable saddle points, leaving the fixed points along ξ2, defined

by Eq. (5), as the only stable fixed points. Conversely, when λ1, λ2 > 0 and

λ1 > 2λ2, the fixed points along ξ2, defined by Eq. (5), become unstable

saddle points, leaving the fixed points along ξ1, defined by Eq. (4), as the
8There is also an unstable fixed point at ξ1,st = 0,ξ1,st = 0, which is the only fixed point
when λ1 = λ2 = 0 (see Figure 10, bottom left). Note that λ1 = λ2 = 0 actually reflects

the systems highest order of symmetry, in that the solution to the system is invariant

with respect to all initial conditions when λ1 = λ2 = 0). Thus, the D4 symmetry of
system when λ1 = λ2 > 0 already reflects a spontaneous symmetry break in the order of

the system and as specified by group theory corresponds to a subgroup of the systems
hidden symmetry group, which in this case is the (continuous) orthogonal group O(2)
(which is the symmetry group of a circle).
9When λ1 or λ2 = 0 the corresponding stable fixed points at Eq. (4) or Eq. (5), respec-

tively, are annihilated at the origin and cease to exist.
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Fig. 10. Phase portraits of Eq. (3) for various settings of λ1 and λ2, where symmetric

positive and negative solutions (fixed points) along ξ1 and ξ2 correspond to solo-action
and joint-action, respectively. In each instance B = C = 1. Black dots correspond to

stable fixed points, grey dots correspond to saddle nodes and white dots correspond to

unstable fixed points. Arrowed lines represent exemplar solution trajectories for different
initial conditions and indicate the basin of attraction for each stable fixed point (see text

for more details).

only stable fixed points. In terms more amenable to the current discussion,

if λ1, λ2 > 0 , then λ1 = 2λ2 and λ2 = 2λ1 denote critical points that bring

about the spontaneous destruction (or creation) of the stable fixed points

along ξ1 or ξ2, respectively. In group theoretical terms, the system realizes

a D2 subgroup of the D4 symmetry group.

From this brief discussion, it should be clear that the key symmetry-

breaking parameters in Eq. (3) are λ1 and λ2, or, more specifically, the

ratio of λ1 and λ2. Indeed, λ1 and λ2, are the system’s control parame-

ters, such that by scaling the ratio of λ1 and λ2, when λ1, λ2 > 0, one can

move the system through the set of spontaneous state bifurcations entailed

by the symmetry of the system–each symmetry-breaking bifurcation is de-

fined by a subgroup of the systems higher order symmetry(see footnote 8).

Returning to the topic of solo- vs. joint-action selection, what λ1 and λ2
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might represent will of course be task specific. Generally speaking, though,

for physical tasks, such as object moving or passing tasks, the parameters

λ1 and λ2, or the ratio of λ1 and λ2, will correspond to a mode relevant

projection of the functional action capabilities of the individuals involved

relative to some key physical property. For a two person manual object

grasping task, for instance, λ1 and λ2 correspond to a collective, mode

relevant, projection of each person’s hand or arm size relative to object

size (Isenhower, Richardson, Carello, Baron and Marsh, 2010; Richardson,

Marsh and Baron, 2007a). A crucial point, however, is that if one picks

the wrong control parameter(s), then the stable (re)organization of solo vs.

joint action will not correspond correctly to the behavioral dynamics de-

fined by the symmetries of orthogonal action modes. Thus, the symmetry

and symmetry-breaking transitions entailed by Eq. (3) and the subgroups

of D4 provide a formal method of validating whether one’s understanding

of the system’s parameters and states is correct.

We are now finally in a position to explicate what stable states of be-

havioral order are possible are for a bi-ordinal solo vs. joint-action action

selection task. If we represent the (orthogonal) solo-action and joint-action

modes of behavior as the collective variables, ξ1 and ξ2, respectively, and

for the sake of simplicity, we consider the two symmetric fixed points de-

fined by Eq. (4) to represent equivalent solo-action solutions and, similarly,

the two symmetric fixed points defined by Eq. (5) to represent equivalent

joint-action solutions, we may then express this as follows:

(1) when λ1 = λ2, stable solutions exist along ξ1 and ξ2 and are isomor-

phic with the symmetry group D4. Solo- and joint-action modes of

behavior are therefore equally stable and therefore equally possi-

ble. In dynamical systems terms, the system is multistable. Either

mode may be actualized (but not simultaneously, as noted above)

and once the system converges onto a stable solution it will remain

there (unless the system is reset to a different initial condition or

undergoes a large perturbation).

(2) when λ1 < 2λ2 or λ2 < 2λ1, stable solutions exist along both ξ1 and

ξ2 (the system is still multistable), but are of different strength and

have differentially sized basins of attraction. Solo- and joint-action

modes of behavior are both possible, but with different probabil-

ities (likelihood). Nevertheless, as in (i) above, once the system

converges onto either a stable solo- or joint-action solution it will

remain there. Thus, if the system finds itself in the weaker of the
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two possible behavioral modes due to initial conditions it will still

remain there (again, unless the systems is reset to a different initial

condition or undergoes a large perturbation). Note that this latter

point predicts the occurrence of hysteresis, which in short, refers

to the presence of history dependent points of state transition. In

other words, the control parameter value at which co-actors tran-

sition from solo- to joint-action, or from joint- to solo-action will

depend, in part, on which mode is currently being performed or

has been performed in the past. As such, previous solo action will

increase the persistence of future solo action and previous joint-

action will increase the persistence of future joint-action.

(3) when λ1 > 2λ2 or λ2 > 2λ1, stable solutions only exist along

either ξ1 or ξ2, respectively; there are non-stable solutions along

the orthogonal axis. That is, solo- or joint-action is possible, but

not both (i.e., the probability of one of the two behavioral modes

is 1). Accordingly, the system should exhibit a nonlinear phase

transition between states as the task specific control parameter is

scaled beyond or below a value that corresponds to λ1 > 2λ2 or

λ2 > 2λ1. In more general terms, if the system was in a behavioral

state that was stable before λ1 > 2λ2 or λ2 > 2λ1, but is no

longer stable after λ1 > 2λ2 or λ2 > 2λ1, then the system will

spontaneously switch to the one stable behavioral mode that still

exists. Thus, if the system was in a stable solo-action state before

λ2 > 2λ1, then it will spontaneously transition to the stable joint-

action state after λ2 > 2λ1. Conversely, if the system was in a

stable joint-action state before λ1 > 2λ2, then it will transition to

the stable solo-action state λ1 > 2λ2.

Research and modeling by Richardson and colleagues (Frank et al., 2009;

Isenhower et al., 2010; Richardson et al., 2007a) has validated these symme-

try derived patterns of behavioral order with respect to the behavioral dy-

namics and mode transitions that occur during a two-person object grasping

and movement task. There is little need to detail the specific findings of

these studies here, as the behavioral ordering of the co-actor’s task perfor-

mance exactly match the symmetry-breaking bifurcations predicted above.

Instead, we end this section by reiterating that because the predictions of

behavioral order specified in Eq. (3) are derived from symmetry consider-

ations, they are largely independent of the particular solo- vs. joint-action

task being considered. That is, these predictions define the behavioral dy-
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namics of any solo- vs. joint action selection task. In fact, the behavioral

order and symmetry-breaking bifurcations defined above, apply to any task

that entails two mutually destructive or constructive action modes. Thus,

they are equally applicable to orthogonally opposed solo-action modes of

behavior (e.g., one-hand vs. two-hand grasping or lifting) or orthogonally

opposed joint or multi-agent modes of behavior (e.g., solo- vs. joint attack-

ing/defending; two-person vs. three-person lifting and moving). Indeed,

such a distinction is only necessary in terms of describing the behavioral

task of interest, as the group theoretic explanation is by definition sym-

metric across a transformation of isomorphic behavioral modes. In other

words, Eq. (3) is not task specific, but symmetry specific, and can therefore

be generalized to any task that has two mutually destructive collective vari-

ables and is isomorphic with the dihedral group D4. To belabor the point

a bit more, the creation and/or destruction of solo- and joint-action is a

natural consequence of spontaneous symmetry-breaking, lawfully entailed

by the symmetry of orthogonal task modes.

4.2. Symmetric Hopf bifurcation theory and rhythmic mul-

tiagent coordination

As a second example of how symmetry considerations and the theory of

spontaneous symmetry-breaking can provide a deep understanding of the

behavioral dynamics that emerge and constrain multiagent coordination,

we consider the effects of system symmetry on the behavioral patterns of

coordination that are possible between identical and symmetrically coupled

rhythmic movements. As a starting point, consider a system of two identi-

cal and symmetrically (bi-directionally) coupled oscillators. As mentioned

above, this would correspond to a pair of individuals (of similar height

and build) coordinating oscillatory (periodic) movements of their respec-

tive right or left legs, arms, or body in the visual presence of one another

(Schmidt et al., 1990). Similarly, consider a pair of individuals coordinat-

ing their rocking movements when seated side-by-side in identical rocking

chairs (Richardson et al., 2007b). For such systems, there are only two pos-

sible patterns of stable behavioral coordination that naturally exist. The

first, and more stable of the two patterns is inphase coordination, which

corresponds to the two oscillators moving together in perfect synchrony.

The symmetry of this pattern of coordination preserves the symmetry of

the system (i.e., two identical and symmetrically coupled oscillators) and,

thus, is invariant with respect to inversion. In other words, the observed
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pattern of coordination would be invariant to a spatial permutation or in-

terchange of oscillator (agent) 1 and oscillator (agent) 2. The other possible

pattern is antiphase coordination, which corresponds to the two oscillators

being phase locked half a period out of phase with respect to each other

(i.e., as one oscillator is beginning a new cycle, the second oscillator is ex-

actly half way through its current cycle). Note, that this second pattern

reflects a state of broken symmetry, in that the pattern of coordination is

no longer invariant to a purely spatial permutation or interchange of oscil-

lator 1 and 2. That being said, antiphase coordination is still very much

entailed by the symmetry of the system and does not correspond to a state

of no symmetry, but rather is symmetric (invariant) with respect to the spa-

tiotemporal transformation that permutes the two oscillators/movements

and shifts the phase by half a period (Collins and Stewart, 1994; Kelso,

1995)(see the next section and below for more details about the spatial and

temporal symmetries of the coupled oscillators).

As an example of the effects of symmetry and symmetry-breaking on

the patterns of coordination that can emerge between systems of coupled

identical oscillators, the two-component system just described is elegant,

but rather simple. Things quickly become more complex, however, as we

increase the number of oscillator movements (or agents) involved in a rhyth-

mic or behavioral coordination task. Take for example, the most minimal

increase in the number of oscillators that make up a system of symmetri-

cally coupled identical oscillators, that is, from two to three. What patterns

of coordination are possible for this system and how are these patterns de-

fined by the symmetry of the system? This question can be answered using

the group theoretical approach to dynamical systems with symmetry de-

veloped by Golubitsky and Stewart (1985); Stewart (1986). This approach

centers on the theory of symmetric Hopf bifurcation, which in simple terms,

predicts the periodic or spatiotemporal solutions that can spontaneously

arise from a symmetric network of coupled nonlinear oscillators, as well as

the transition between different behavioral patterns in terms of symmetry-

breaking bifurcations. Unfortunately, a formal discussion of the theory of

symmetric Hopf bifurcation is well beyond the scope of this chapter and we

refer the reader to Golubitsky and Stewart (1985); Stewart (1986); Golu-

bitsky and Stewart (2003) for a technical introduction to the theorem (for

a more accessible review, see Collins and Stewart (1993, 1994) and Stewart

and Golubitsky (1992/2011)). However, understanding these details is not

necessary given that the predictions are expressed in group-theoretic terms

(i.e., with the use of symmetry groups). Furthermore, like symmetry-based
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approaches in general, the approach is independent of the specific features

or intrinsic dynamics of the component oscillators that make up the net-

work. Thus, the approach provides a system independent formalism for

predicting the patterns of behavior for any network of identical and sym-

metrically coupled oscillators, one based entirely on how the symmetries

of the patterns observed (the symmetry of effects) relates to the symme-

tries of the coupled oscillator network itself (the symmetry of the causes)

(Golubitsky, Stewart, Buono and Collins, 1999; Collins and Stewart, 1994).

With the latter statements in mind, we return to the question of what

patterns of coordination are possible for a system of three symmetrically

coupled identical oscillators and attempt to unpack these patterns by means

of the symmetry groups that define such a system. To do this, we borrow the

descriptive formalism employed by Collins and Stewart (1994), in which the

state of an oscillator i at time t can be defined as a (vector) variable ui(t).

Accordingly, the collective state of the entire system, U(t) is a function of

each component oscillator ui(t), such that for a system of three coupled

identical oscillators

U(t) = (u1(t), u2(t), u3(t)) (6)

Given this formalism, it is perhaps immediately obvious that one pos-

sible collective state of U(t) would be perfect inphase synchrony, such that

u1(t) = u2(t) = u3(t) (7)

for all time t. In this case, the behavior of each oscillator would be identical

and, thus, U(t) would be spatially symmetric. More specifically, U(t) would

be invariant to the permutation (interchange) of each component oscillator

ui(t), whereby

U(t) = (u1(t), u2(t), u3(t)) = (u2(t), u3(t), u1(t))

= (u3(t), u1(t), u2(t)) = (u1(t), u3(t), u2(t))

= (u2(t), u1(t), u3(t)) = (u3(t), u2(t), u1(t)) (8)

This symmetric relationship is captured by the perturbation group S3,

which as we illustrated back in Figure 3, is isomorphic with the dihedral

group D3 (i.e., the symmetry group of an equilateral triangle). Thus, the

inphase pattern of coordination is simply a preservation of the D3 sym-

metry of the three oscillator network as a whole–the D3 symmetry can be

discerned from a graphical representation of the network as a symmetric

ring (equilateral triangle) of oscillator components (see Figure 11).
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Perhaps equally obvious, is that the oscillators cannot all be antiphase

from one another. However, it is possible for one oscillator to be out of

phase with the other two. For example,

u1(t) = u2(t) = u3(t+ T/2) (9)

in which case all three oscillators would be phase locked, but oscillator 3

would be half a period, T (i.e., T/2) out of phase (antiphase) with respect

to oscillator 1 and 2. Here, (t+T/2) is a temporal symmetry of the system,

such that u1(t) and u2(t) are equivalent to u3(t) when shifted (transformed)

in phase by half a period, T/2. Together, Eqs. (7) and (9) reveal that U(t)

can possess both spatial and temporal symmetries. A quick comparison

of Eqs. (7) and (9) also reveals that the symmetry of the pattern defined

by Eq. (9) is of a lower order than the symmetry of the inphase pattern

defined by Eq. (7). That is, the pattern of coordination defined by Eq. (9)

corresponds to a state of broken symmetry with respect to the higher or-

der, D3 symmetry, of the system’s architecture (the symmetry preserved

in Eq. (7)). The broken symmetry corresponds to the fact that oscilla-

tors 1 and 2 are still spatially symmetric (interchangeable) in Eq. (9), but

oscillator 3 is not, whereby

U(t) = (u1(t), u2(t), u3(t+ T/2)) = (u2(t), u1(t), u3(t+ T/2)) (10)

Despite this break in symmetry, the pattern defined in Eq. (9) is still a

pattern of coordination that is entailed by the higher order symmetry of the

system as a whole. How? Well, the symmetry persevering permutations of

Eq. (10) correspond to the cyclic group Z2, which as we also illustrated back

in Figure 3, is a subgroup of D3. This is significant because it suggests that

the symmetry-breaking oscillations that define the possible patterns of a

system of three symmetrically coupled identical oscillators could be defined

by the subgroups of the system’s higher order symmetry group. This is

indeed true and, thus, the possible patterns of behavioral order that can be

exhibited by the system of symmetrically coupled identical oscillators can

be identified entirely via group theoretic calculations (Collins and Stewart,

1994; Golubitsky and Stewart, 2002, 2003).

With the latter knowledge in hand we can now detail the behavioral pat-

terns that are possible for a system of three symmetrically coupled iden-

tical oscillators. In short, there are four stable patterns of coordination,

plus a state of complete asynchrony (i.e., no stable phase relation) that are

predicted from the group-based theory of symmetric Hopf bifurcation de-

veloped by Golubitsky and Stewart (1985); Stewart (1986). These patterns
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are illustrated in Figure 11 and correspond to different isotropy subgroups

of D3×S1, where S1 reflects the temporal symmetry that is entailed by pe-

riodic systems, such as the phase shift of T/2 defined in Eq. (9). The first

is the all-inphase pattern described above, in which all three oscillators are

spatially and temporally symmetric. The second pattern is a rotating wave

pattern, in which all three oscillators are shifted by 2π/3. For the third

pattern, two oscillators have the same waveform and move inphase with

one another, with the third oscillator adopting a different waveform and/or

phase relationship. Note, that the two-inphase, one-antiphase pattern de-

fined in Eq. (9) is of this type. Finally, for the fourth stable pattern, two

oscillators have identical waveforms, but are antiphase with one another

(i.e. are shifted by T/2 or π), with the third oscillator adopting a different

waveform and moving at twice the frequency of the other two oscillators

(imagine a person walking with a cane; the persons legs would move in

a standard antiphase manner, but the cane would move at twice the fre-

quency of the legs in order to hit the ground with each step; see Strogatz

and Stewart, 1993, for a graphical representation of this exact example).

At this point we remind you that because these predictions are de-

rived from symmetry groups, they are independent of the specific details

of the nonlinear oscillators employed or the manner of symmetric coupling

(i.e., mechanical, neuromuscular, visual, auditory). That is, any system

of symmetrically coupled and identical coupled oscillators with a group

of symmetries isomorphic with D3 × S1 should be constrained to these

three generic patterns of behavioral order. This is true for physical, as

well as biological systems, including multiagent systems10. As evidence of

this fact, Ariyabuddhiphongs, Kallen and Richardson (2015) have recently

demonstrated how groups of three visually or audibly coupled individuals

instructed to drum together (each individual drumming on a drum pad

with single drum-stick) are naturally constrained to these generic patterns

of coordination. That is, participants can produce all four of the above

stable patterns of coordination, including the rotating wave pattern and

the pattern in which two individuals drum antiphase, and the third drums

at twice the frequency.

A much more compelling example of how the behavioral patterns of a

small group of symmetrically coupled agents performing rhythmic or oscilla-

tory movements (or, as in the following case, semi-periodic movements) are

10Of course, for biological systems, including multi-agent systems the coupling and in-

trinsic dynamics of the oscillators will likely be nearly symmetric. Thus, small, but
accountable deviations may sometimes occur.
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Fig. 11. (top left) A graphical representation of a system of three symmetrically cou-
pled identical oscillators. The black arrows represent the symmetric two-way coupling

between all oscillators. (top right) A table of the generic coordination patterns predicted

by symmetric Hopf bifurcation theory (Collins and Stewart, 1994). Letters correspond
to the waveform exhibited by an oscillator (same letter, same waveform). κ represents

a symmetry transformation of permuting (interchanging) the states of oscillators 1 and

2, while leaving the state of oscillator 3 fixed. 2T corresponds to one oscillator having
twice the frequency of the other two. (bottom). A representation of the coordination

patterns detailed in the table. The different forms of arrows (dashed, double, or singled

headed) correspond to the different phase relationships that characterize the different
coordination patterns. The double lined circle represents the 2T oscillator for Z2(κ, 2T ).

consistent with those predicted by Golubitsky and Stewart’s (1985; 1986)

theory of symmetric Hopf bifurcation, comes from a study by Yokoyama and

Yamamoto (2011) that investigated the coordination patterns that emerged

between individuals playing a 3 vs. 1 ball possession game. The task was a

kind of ‘monkey-in-the-middle’ game, in which three individuals (attackers)

positioned in a triangle attempted to pass a ball back and forth between

each other in order to prevent a 4th individual positioned in the center of

the group from stealing the ball. The rotational movement of each attacker

was recorded as the game was played in order to determine the patterns

of coordination that occurred between the three attackers. Based on the

spatial and temporal symmetries inherent to symmetric Hopf bifurcation

theory, the authors predicted that three patterns would likely emerge: (i)

a rotating wave pattern, in which the rotational movements of each of the

three players exhibited the same waveform and were synchronized with a
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constant phase difference of 2π/3; (ii) a 2-inphase, 1-antiphase pattern (the

authors referred to this as a partial inphase pattern), in which the move-

ments of two players would have the same waveform and be synchronized

inphase with one another, while the movements of the 3rd player would

exhibit a different waveform and be half a period out of phase (antiphase)

with respect to the two inphase players; (iii) a partial antiphase pattern,

in which the movements of two players would exhibit the same waveform

and be synchronized in an antiphase manner, while the 3rd player would

exhibit a different waveform (or no oscillatory movement at all). The re-

sults confirmed these expectations, with groups spontaneously adopting all

three patterns at various times during the experimental session.

It is important to appreciate that each pattern expected and observed in

this 3 vs. 1 ball passing game is isomorphic with one of the generic isotropy

subgroups of D3×S1, namely Z̃3, Z2(κ), and Z2(κ, 2T ), respectively. More-

over, neither the all-inphase pattern of coordination (i.e., D3 pattern), nor

complete asynchrony were predicted to be observed, as complete symmetry

and complete asymmetry represent non-functional organizations with re-

spect to achieving the goal of the multiagent task. In more general terms,

the functional behavioral order of the multi-agent system was dependent

on symmetry-breaking Hopf bifurcations. We discuss the functional role of

symmetry breaking in more detail in the final section of this chapter.

Finally, although we have focused our discussion on the symmetry and

symmetry-breaking transitions that define the behavioral order of systems

of three coupled identical oscillators, the symmetric Hopf bifurcation the-

orem developed by Golubitsky and Stewart (1985); Stewart (1986) can be

applied to symmetric oscillator networks of other sizes (e.g., n = 3, 4, 5, 6 for

example). It can even be employed to identify the behavioral possibilities

for networks of oscillators that include unidirectional couplings (Collins

and Stewart, 1994). In each case, the group theoretic approach is able

to identify a generalizable, system independent set of oscillator patterns

that could be observed for any system of n coupled identical oscillators.

Although it has yet to be investigated, we would therefore predict that

the symmetry-breaking transitions that can be derived from the theory of

symmetric Hopf bifurcation could therefore account for the functional pat-

terns of coordination that emerge between the rhythmic movements of other

small multi-agent groups, for instance groups with 4, 5 or 6 individuals, or

for multiagent tasks that require each individual agent to coordinate more

than one limb (i.e., both legs or both arms), largely independent of the
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task being performed (that is, if the system in question is symmetric, or at

least near symmetric). Motivated by the successful application of Golubit-

sky and Stewart’s symmetry approach in predicting animal gait patterns

(Collins and Stewart, 1993; Golubitsky et al., 1999); (Schöner, Jiang and

Kelso, 1990), as well as other multilimb systems (Jeka, Kelso and Kiemel,

1993; Kelso and Jeka, 1992), Harrison and Richardson (2009) have provided

initial evidence for this latter claim by demonstrating how the gait patterns

observed between individuals walking one behind the other (either visually

coupled or mechanically coupled via an interpersonal foam appendage) are

not only a direct result of the symmetries that defined a four leg system,

but are also consistent with the group-theoretic predictions for quadrapedal

systems in general.

4.3. Detuning and interpersonal rhythmic coordination

After a careful review of the previous two sections, we hope that you are

now convinced of the significance of the group-theoretic approach to dy-

namical systems with symmetry and the effects of spontaneous symmetry-

breaking for understanding the creation, destruction, and (re)organization

of coordinated multiagent behavior. Assuming this is so, we now turn to

the effects of explicit symmetry-breaking on the behavioral order of multi-

agent coordination and, in particular, to the explicit symmetry-breaking

effects of detuning (i.e., intrinsic frequency differences) on the patterns of

interpersonal (two-person) rhythmic coordination.

Recall that two stable patterns of coordination exist for a system of two

identical and symmetrically coupled oscillators, namely, inphase coordina-

tion, which preserves the symmetry of the system, and antiphase coordina-

tion, which corresponds to a state of broken symmetry (Kelso, 1995; Kelso,

DelColle and Schöner, 1990). As we have indicated several times already,

these exact patterns of coordination are known to define the coordination

that occurs between the same (or at least near similar) rhythmic movements

of interacting individuals. Indeed, beginning with the foundational work of

Schmidt et al. (1990), numerous studies have now demonstrated how the

coordination that occurs, both intentionally and unintentionally, between

identical rhythmic limb and body movements of visual and audibly coupled

individuals is constrained without practice (and often without any aware-

ness on the part of the individuals involved) to an inphase or antiphase

relative phase relation (for a review see Schmidt and Richardson, 2008).
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As noted in the introductory section to explicit symmetry-breaking

above, however, differences between the natural frequencies of coupled os-

cillators (i.e., when ∆ω 6= 0) introduce an explicit break in the component

symmetry of the system (Byblow and Goodman, 1994; Schmidt, Shaw and

Turvey, 1993; Sternad, Collins and Turvey, 1995), thus destroying the coni-

cal inphase and antiphase patterns in favor of a differential leader/follower

relationship. With respect to rhythmic interpersonal coordination, this

equates to the individual with the slower intrinsic movement frequency lag-

ging behind the individual with the faster intrinsic movement frequency

(Schmidt and Turvey, 1994; Schmidt et al., 1998). Moreover, the magni-

tude of this effect increases with an increases in the magnitude of detuning,

such that as the difference between the natural movement frequencies of

coordinating individuals increases, so too does the differentiation of the

individuals as phase leader and phase follower.

Clearly, the differential lead/lag relationship that is created by an asym-

metry in component movement frequencies is by no means a dramatic ex-

ample of how explicit symmetry-breaking operates to increase the behav-

ioral order of multiagent coordination. However, once this symmetry-break

is introduced, the potential for much more complex and elaborate modes

of rhythmic coordination become possible, especially for significantly large

magnitudes of detuning (Sternad, Turvey and Saltzman, 1999; Treffner and

Turvey, 1993). To understand what patterns are possible and why, one must

first understand how the effects of detuning on the patterning of rhythmic

coordination are modulated by the strength of the coupling that links the

oscillatory movements involved. Note that coupling strength in interper-

sonal coordination is typically a function of the amount or detectability of

visual or auditory information that each individual has about a co-actors

movement, the degree to which the individual actors attend to such infor-

mation, and/or the degree to which the actors intend to coordinate or syn-

chronize their movements (Schmidt and O’Brien, 1997; Richardson et al.,

2005, 2007b). In short, increases in coupling strength increase coordination

stability and decrease the effects of detuning (i.e., decrease the lead/lag dif-

ference). The converse is also true, in that, decreases in coupling strength

decrease coordination stability (i.e., increase the variability of coordination)

and increase the effects of detuning (i.e., increase the lead/lag different).

Key to the patterning and stability of rhythmic interpersonal coordination,

therefore, is the relative magnitudes of detuning and coupling strength, such

that as the magnitude of detuning increases a stronger coupling strength

is required to maintain a stable 1:1 frequency locked inphase or antiphase
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relationship (Schmidt and Turvey, 1994; Schmidt et al., 1998).

Of particular significance for the current discussion, is that when the

coupling strength is sufficiently weak in comparison to the magnitude of

detuning, the possibility of stable 1:1 frequency locked synchronization nat-

urally or spontaneously11 emerging between co-actors becomes highly un-

likely and in some instances, impossible (Lopresti-Goodman, Richardson,

Silva and Schmidt, 2008; Richardson et al., 2007b). As indicated above,

however, this is not to say that such situations result in the complete ab-

sence of behavioral coordination, only that they result in the absence of

absolute 1:1 frequency locked coordination; the pattern of coordination

with the highest degree of symmetry.

So what other patterns of interpersonal behavioral coordination can

emerge as a result frequency detuning? The most interesting and somewhat

counterintuitive possibility is that frequency detuning can actually induce

the appearance of multifrequency or polyrhythmic modes of coordination

when the strength of the coupling between co-actors is moderate-to-low

(Peper, Beek and van Wieringen, 1995). The simplest example of a multi-

frequency mode of coordination is 1:2 coordination, where one oscillatory

movement completes one cycle for every two cycles of another oscillatory

movement. There are, of course, many other n:m modes of multifrequency

coordination that are possible between two coupled oscillators, such as 1:3,

2:5, 3:8, . . . , etc. These modes are specified by the Farey Tree (see Figure

12 left), where movement down the tree is associated with an increase in

the complexity or order of the performed frequency ratio12. Extended to

the circle map that is used to model rhythmic coordination as an emergent

frequency relationship between two oscillators based on the ratio of their

natural frequencies and coupling strength (Peper et al., 1995; Pikovsky,

Rosenblum, Kurths and Hilborn, 2002), one can understand multifrequency

coordination as an ‘explicitly moderated’, spontaneous symmetry-break,

such that for moderate to low coupling strengths specific asymmetries in

the natural or resonant frequencies of coupled oscillators can induce the

emergence of a specific multifrequency coordination mode13. As illustrated

11Here we use the terms naturally and spontaneously to refer to situations in which the

rhythmic coordination that occurs between co-actors is not intentional, but rather occurs
unintentionally and without the actor’s overt control.
12With respect to group theory, the Farey Tree, like other binary Trees (e.g., the Stern-
Brocot tree), as well as fractal sets (i.e., Cantor set) and period doubling maps, can be
expressed in such a way that the existence of the different n:m ratios are defined by a

symmetry group that is isomorphic with the modular group PSL(2,Z) (Vepstas, 2004).
13Collins and Stewart (1994) have also demonstrated how certain patterns of multi-
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in the right panel of Figure 12, the stability predictions of the circle map

illustrated as Arnold tongues allows one to easily identify this prediction,

as well as which combinations of frequency detuning and coupling strength

allow for the stable emergence of specific multifrequency patterns.

Fig. 12. (left) Farey Tree. Generally, higher order ratios are less stable than lower order

ratios, and thus are less likely to occur or be sustained over time. (right) Arnold tongues

for the stable frequency ratios (captured by the bare winding number, omega) predicated
by the circle map as a function of coupling strength. The solid black areas are the Arnold

tongues and represent the specific intersection of component asymmetry and coupling

strength between oscillators that supports the emergence of a number of multifrequency
coordination patterns, as well as the differentially sized basins of attraction for each n:m

mode.

So is this counterintuitive possibility true? Can more complex, multifre-

quency patterns of rhythmic interpersonal coordination emerge as a result

of the explicit and spontaneous symmetry-breaks introduced by changes in

frequency detuning and coupling strength, respectively? A recent study

by Washburn, Coey, Romero and Richardson (2014) indicates that the an-

swer to this question is yes. In this study, participants were instructed to

swing a hand-held pendulum that had a resonant frequency of 1Hz at a

comfortable pace while observing an oscillating visual stimulus (the visual

stimulus was used as an experimentally controlled proxy for the rhythmic

movements of another individual). The frequency of the visual stimulus

was manipulated such that its frequency was either equal to, well below, or

frequency coordination, in particular, 1:2 coordination in quadrapedal locomotion (four

oscillator systems), are also predicted by Golubitsky and Stewart’s group theoretic ap-
proach to symmetric Hopf bifurcations.
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well above the 1 Hz frequency of the hand-held pendulum (i.e., from .5 and

2 Hz). Somewhat surprisingly, the results demonstrated that the rhythmic

movements of the participants did indeed become spontaneously and unin-

tentionally entrained with the oscillatory movements of the visual stimulus

at a variety of n:m modes, namely at 1:2, 2:3, and even 3:4 modes of multi-

frequency coordination. Moreover the occurrence of these n:m modes was

completely consistent with the stability predictions of the circle map, in

that they only occurred if (i) the ratio of inherent frequency difference was

close to a ratio number that characterizes a specific n:m pattern, and (ii)

the between movement coupling was weak (i.e., visual and not intentionally

defined). Again, the behavioral order observed was a direct consequence

of the symmetry-breaking factors that defined the system components and

component interactions, in this case, one explicit and one spontaneous.

It is important to appreciate that the participants in the Washburn et al.

study were unaware of the multifrequency coordination that occurred be-

tween their movements and the movements of the visual stimulus. In other

words, the coordination that was observed did not require an ‘intention to

coordinate’ on the part of the participant. In fact, such intentions can make

the production of multifrequency coordination very difficult, as an intention

to coordinate operates to increases the coupling strength between co-actors

(Schmidt and Richardson, 2008). This is why multifrequency patterns of

coordination are so difficult to produce intrapersonally (Fontaine, Lee and

Swinnen, 1997; Zanone and Kelso, 1992), as the coupling strength that

results from the neuro-mechanical links that exist between different limbs

of the human body is relatively strong. The multifrequency coordination

observed by Washburn et al. (2014), was therefore simply an emergent con-

sequence of the physical asymmetries and contextual constraints (i.e., weak

coupling strength) that defined the behavioral task. To belabor the point,

the symmetry of the effect was written in the symmetry of the causes that

brought about that effect. The more general implication, and one that

will be exemplified in the other examples to come, is that asymmetries

in the intrinsic dynamics of co-acting or socially situated individuals may

actually create and promote greater and more complex patterns of behav-

ioral coordination. With respect to interpersonal rhythmic coordination, it

is also worth noting that social psychological asymmetries such as group

membership or identity (i.e., in-group vs. out-group status) and individual

difference asymmetries, such as social competence, can also result in more

complex patterns of rhythmic coordination, including lead/lag relationships
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and intermittent patterns of coordination (Lumsden, Miles, Richardson,

Smith and Macrae, 2012; Miles, Lumsden, Richardson and Macrae, 2011;

Schmidt, Christianson, Carello and Baron, 1994). Thus, physical compo-

nent asymmetries are not the only way in which the symmetry of rhythmic

interpersonal coordination can be explicitly broken.

4.4. Functional asymmetries and complementary coordina-

tion

So far we have considered breaks in symmetry that are either defined by

the higher order symmetry of a system or system law (i.e., spontaneous

symmetry-breaking), or are the result of explicit asymmetries (i.e. imper-

fections or biases) in the intrinsic component dynamics of a multiagent

system. We have said little, however, about the role of symmetry-breaking

with respect to the constructive and functional achievement of multiagent

task goals, although this was implicit in the examples described above.

Thus, in this last section of the chapter we address this question directly

and, in particular, detail the constructive, functional and complementary

effects of symmetry-breaking with respect to goal directed multi-agent task

performance. The reader may note that from this point on, we adopt a

more empirical and conceptual approach to the symmetries and symmetry-

breaking events that define the behavioral order of multi-agent coordina-

tion. However, we fully expect that with a little more work, many of the

examples below could by formulated in a group theoretic manner, which

may in turn reveal the true, hidden symmetries and laws that underlie these

and many other multiagent phenomena.

For cooperative or coordinated multiagent activity, functionally related

symmetry-breaks typically correspond to some kind of differential or com-

plementary task role (e.g., leader/follower when weaving through a crowd;

driver/navigator during rally racing; or pusher/puller when moving a piece

of furniture). These functional or complementary task roles can either ex-

ist prior to task performance, say due to some historic or explicitly defined

task asymmetry (Byblow and Goodman, 1994) or asymmetric informational

constraint, or they can emerge over the course of an interaction, either in-

tentionally or unintentionally. In many instances, these functional or com-

plementary asymmetries denote some form of explicit or induced symmetry-

breaking event, or imposed constraint, that is not entailed by some higher

order or hidden symmetry. However, it is also possible for functional task

asymmetries to occur spontaneously and then be self-sustained via the ex-
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plicit biases that such spontaneous symmetry-breaking induce (analogues

to the buckling rod example described above). Finally, although functional

asymmetries are not always necessary for successful task completion, like all

symmetry-breaking effects, they nearly always correspond to the generation

of new, and often more robust, levels of behavioral organization.

As a preliminary example, let’s consider what happens when we explic-

itly break the social and informational symmetry within a simple rhythmic

interpersonal coordination task. This was investigated in a recent study

by Vesper and Richardson (2014), in which pairs of participants performed

a non-verbal tapping task that required them to synchronize a continu-

ous sequence of taps directed at targets positioned on the surface of a

table (i.e., coordinating their tapping movements such that they tapped

the same target location at the same time). Four different target locations

were employed, with positions equal distance apart directly in front of each

participant, and with a single trial sequence involving 256 taps. The key

manipulation involved an informationally based asymmetry in task role,

whereby one participant was designated as the Leader, and received in-

formational signals about upcoming target locations, while the other par-

ticipant took the role of Follower, and did not receive this target location

signal. An occluding screen was employed so that participants could not

see each other’s face, eyes, or head, but still had mutual bidirectional visual

information allowing them to see each other’s complete tapping movement

(see Figure 13 left).

Fig. 13. Experimental setup for the synchronous tapping task investigated by Vesper
and Richardson (2014). Average movement trajectories of the Leader as a function of

the horizontal target distance to be moved. See text for more details.

Of particular relevance to our discussion here was finding that Leaders

involuntarily tapped with a movement amplitude that was scaled to the

distance of the target to be tapped, thereby emphasizing for the Follower
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differences between correct targets and possible alternatives. This effect

was not observed in two baseline conditions in which both participants had

information about upcoming target locations or the follower could not see

the full trajectory movements of the Leader. From the symmetry perspec-

tive, the (a)symmetry of the movements produced was a direct result of

the (a)symmetry of predefined task roles. That is, the explicit break in the

symmetry of the task role resulted in an increase in the functional order

of the Leader so as to support the interpersonal task goal (i.e., tap in syn-

chrony). In most instances, the Leader was completely unaware that they

were behaving in such a way, indicating that the communicative intent of

the Leader’s movement was a natural and self-organized consequence of the

role induced asymmetry. Lastly, it should be noted that the asymmetry in

the Leader’s movement trajectories that resulted from the experimentally

induced break in task role could only have occurred given the symmetry of

the task goal (to move in synchrony)–the dualistic nature of symmetry and

asymmetry reveals itself once more.

Vesper and colleagues have uncovered similar findings with respect to

two-person synchronized jumping tasks (Vesper, van der Wel, Knoblich and

Sebanz, 2013), in which induced asymmetries in the distance to be jumped

resulted in a reorganization in the jumping action of the person who had the

shortest distance to jump. More specifically, when two co-acting individuals

were instructed to jump to different target locations at the same time,

individuals with the shortest jumping distance spontaneously modulated

their movement dynamics to ensure synchronous coordination.

Together, these tapping and jumping studies provide great examples of

how a-priori induced asymmetries in the task role or the availability of task

relevant information can operate to functionally structure the behavioral

order that occurs between coordinating individuals. Yet, we are still left

with the question of whether functionally related complementary roles can

emerge as a result of an explicit or spontaneous break in symmetry. With

regard to explicit symmetry-breaking in the context of a physical joint

action task, one example of how constructive asymmetric movement pat-

terns and complementary participant roles can emerge comes from a study

by Bosga, Meulenbroek and Cuijpers (2010) that examined the dynamics

of an interpersonal balance board task. The results revealed that pairs

learned to stabilize the interpersonal balance board by imposing a differ-

ential leader-follower type solution, with the intra-personal control of one

individual operating in a subordinate and compensatory role with respect
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to the control of their co-actor. A more recent example, one that better

lends itself to a formal description of how explicit symmetry-breaking pa-

rameters can induce more functionally organized behavioral order during

multiagent coordination, stems from a study by Richardson and colleagues

(Richardson, Harrison, Kallen, Walton, Eiler, Saltzman and Schmidt, 2015;

Eiler, Kallen, Harrison and Richardson, 2013) examining the behavioral dy-

namics of a two-person collision avoidance task. For this task, participant

pairs were instructed to perform a repetitive targeting task in which they

each moved a computer stimulus back and forth between sets of diagonally

opposed target locations without the stimuli colliding into each other. Each

participant in a pair stood facing a 50 inch computer monitor and controlled

the computer stimulus (a small red dot) using a motion-tracking sensor (see

Figure 14 top right). The targets were large squares positioned in each of

the four corners of the monitor, with one participant moving their stimulus

between the bottom-left and top-right target set, and the other participant

moving their stimulus between the bottom-right and top-left target set.

Each monitor displayed the real-time motion of the participant’s own stim-

ulus, as well as the motion of their co-participant’s stimulus. Pairs received

1 point for completing a 40 s trial without colliding and the goal was to

achieve a score of 15.

For this task, participant pairs faced a conflict between the natural

tendency to synchronize straight-line movement trajectories between the

targets in an inphase manner and the fact that such synchronization would

result in a collision. The results revealed that pairs overcame this conflict by

quickly converging onto a solution that involved complementary task roles,

with one participant adopting a more straight-line trajectory between tar-

gets and the other participant adopting a more elliptical trajectory between

targets (see Figure 14, right). In addition, the participant who adopted the

more elliptical trajectory consistently lagged the participant who adopted

the more straight-line trajectory by an average of approximately −30◦. Of

particular significance, this asymmetric pattern of behavioral coordination

was consistent across pairs and reflected a highly stable pattern of comple-

mentary behavioral coordination that enabled participants to concurrently

synchronize their movements while avoiding a collision.

Richardson and colleagues hypothesized that these complementary be-

havioral dynamics resulted from an explicit symmetry-break in the repulsive

coupling that prevented collisions. This break not only produced an asym-

metry in the ellipticality of the movement trajectories, but also simultane-
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Fig. 14. (left top) Representation of the experimental setup and task display employed
by Richardson et al. (2015). (right) Example movement data from trials 1, 8 and 15 for

five of the eleven pairs that completed the study. (left middle) Abstract representation of

the 2-dimensional task space for an individual instructed to perform a simple point-mass
(end-effector) rhythmic movement task between two target locations. (right bottom)

Abstract representation of the joint-action system in which two actors are instructed to

coordinate point-masses between targets positioned on orthogonal, 45◦ angle motion axes
with respect to a shoulder-centered coordinate system. For the task space, xi corresponds

to the between target axis of oscillation for a participant, with movement along this axis
defined by a limit cycle oscillator. yi corresponds to orthogonal deviations away from a

principal between target movement axis and are therefore defined by a simple damped

mass-spring function. ξxi and ξyi correspond to the horizontal (frontal) and vertical
(sagittal) dimensions of the task movements with respect to shoulder-centered body-

space (see text for further details).

ously allowed participants to synchronize their between target movements

at a phase lag, and as such, further increase the margin of safety. To test

this hypothesis, Richardson et al. (2015) formulated a task model of the
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behavioral dynamics observed utilizing the following set of equations:

ẍ1 − b1ẋ1 + c1x
2
1ẋ1 + k1x1 = α1(ẋ2 − ẋ1)− γ1(x1 + y2)e−|x1+y2|

ÿ1 − b2ẏ1 + k2y1 = γ1(y1 − x2)e−|y1−x2|

ẍ2 − b1ẋ2 + c1x
2
2ẋ2 + k1x2 = α2(ẋ1 − ẋ2) + γ2(x2 − y1)e−|x2−y1|

ÿ2 − b2ẏ2 + k2y2 = −γ2(y2 + x1)e−|y2+x1| (11)

Here, each participant’s behavior is modeled as an oscillating point-mass

within a two-dimensional task space (i.e., a task space plane). An illustra-

tion of the two-dimensional task space for a single participant is illustrated

in the middle left panel of Figure 14. The projection of this task space

within the body space coordinates of the interpersonal behavioral goal is

illustrated in the bottom left panel of Figure 14. In this task space, the

x -axis corresponds to the axis of instructed oscillation with a van der Pol

oscillator employed to generate a self-sustained oscillation of the point-mass

along this between target axis. The y-axis corresponds to deviations away

from the oscillatory motion axis, hence a simple damped mass-spring equa-

tion was used for y to minimize deviations away from the primary motion

axis. Accordingly, in Eq. (11) x1 and y1, ẋ1 and ẏ1, ẍ1 and ÿ1 correspond

to the position, velocity, and acceleration of participant 1’s end-effector

within the task space, and x2 and y2, ẋ2 and ẏ2, ẍ2 and ÿ2 correspond to

the position, velocity, and acceleration of participant 2’s end-effector within

the task space. The parameters kj and bj are stiffness and damping coef-

ficients, respectively, and the cix
2
i ẋi expressions are the van der Pol (limit

cycle oscillator) escapement functions.

In terms of inter-agent coupling, α1((ẋ2)− (ẋ1) and α2((ẋ1)− (ẋ2) are

dissipative coupling functions that operate to minimize the difference be-

tween each participant’s primary oscillation axes (i.e., the between target

axes x1 and x2) with a strength defined by αi. Finally, the far right ex-

pressions in each equation are repeller functions that act to push the two

participants’ end-effectors away from each other, at a strength determined

by an exponential function of distance and γi. It is these latter repeller

functions and the corresponding strength parameters γ1 and γ2 that are

most important for our current discussion, in that scaling γ1 and γ2 reveals

how the complementary roles that contributed to the task success of pairs

(i.e., asymmetry in path ellipticality and deviations from 0◦ relative phase)

was the result of a functional inter-participant asymmetry in the strength

of these repeller dynamics. This is best demonstrated by detailing the three

ways in which scaling γ1 and γ2 can influence the movement trajectories
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produced by Eq. (11):

(1) If γ1 = γ2 = 0, then no motion is created along y1 or y2 (i.e.

y1 = y2 = 0). Synchronized straight-line movement trajectories are

therefore produced along the primary, oscillatory axes of motion,

x1 and x2, which is equated with unsuccessful task performance as

such trajectories would result in a collision (see Figure 15 left).

(2) If γ1 = γ2 > 0, then equivalent motion patterns are created along

y1 or y2 resulting in elliptical trajectories that are symmetric and

synchronized with zero phase lag (see Figure 15 middle). Note that

this situation actually results in a stable collision avoidance solu-

tion, especially for γi � 0 . The solution is symmetric, though,

both interims of the movement trajectories produced and the state

topology of Eq. (11)–the solution is invariant to the permutation

of (x1, y1) and (x1, y1)–and does not include a phase lag. In oth-

ers words, this solution does not entail the functional asymmetry

(complementary roles) observed in the experimental data.

(3) If γ1 6= γ2, an asymmetry in the movement trajectory emerges,

as well as a phase lag between the more-elliptical and the more-

straight-line trajectory (see Figure 15 right). This asymmetry and

phase lag is qualitatively similar to that observed in the exper-

imental data reported above. In fact, by modulating the differ-

ential magnitudes of γ1 and γ2 Eq. (11) can generate a range of

movement trajectory patterns that match the range of coordinated

movement patterns exhibited by participants and displayed in the

bottom right panel of Figure 14 (see Richardson et al., 2015, for

more simulation examples).

It is important to note that pairs in the Richardson et al. (2015) study

were not allowed to converse during the experiment and discovered the

coordination pattern defined by Eq. (11) implicitly. In most instances,

the participants in the study were not even aware of the dynamic control

strategy that they were employing. This implies that control of ‘who-did-

what-and-when’ and the ‘intention’ of one or both participants in a pair to

adopt a specific role emerged as a direct consequence of the (a)symmetries

of the task constraints. Further, the explicit symmetry-break in the re-

spective strengths, γi, of the repulsive coupling functions defined for par-

ticipant 1 (x1, y1) and participant 2 (x2, y2) is analogous to the explicit

symmetry-breaking effects of detuning (i.e., ∆ω) outline above. This sug-
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Fig. 15. Examples of how modulating the symmetry and strength of the repulsive cou-

pling parameters γ1 and γ2 in Eq. (11) can produce movement trajectories qualitatively
similar to those observed between real participants pairs. The simulated time series in

each panel were generated using arbitrary initial conditions and the parameter settings

b1 = 1, b2 = 2, k1 = k2 = 2π, c1 = c2 = .5 and α1 = α2 = .5. (left), γ1 = γ2 = 0.
(middle) γ1 = γ2 = 15. (right) and γ1 = 20, γ2 = 2. A small amount of Gaussian noise

was also added at each time-step (taken from a normal distribution with a mean of 0

and an SD of 5) to all 4 equations in Eq. (11). Solid lines denote movement trajectories;
grey dots denote relative movement positions (i.e., relative phase) at an exemplar time

step (see text for more details).

gests that functional task asymmetries can induce a break in symmetry

in the behavioral dynamics of on-going behavior just as physical or in-

formational differences or imperfections do (Byblow and Goodman, 1994;

Sternad, Turvey and Saltzman, 1999). Accordingly, it is likely that the dy-

namical processes that support complex joint action behavior may well be

characterized by the induction and maintenance of asymmetric, inter-agent

relations, with explicit changes in the symmetry of joint-action behavior

marking the emergence of higher or lower orders of complex and comple-

mentary social activity and coordination (Lagarde, 2013; Richardson et al.,

2015).

Given these latter points, we feel it is important to provide one more

example of how symmetry-breaking bifurcations are synonymous with the

emergence of functional, complementary task roles. This last example is

also significant because it not only involves more than two agents (is truly

a multiagent task), but also concerns a cognitive rather than a physical

task goal. It also provides an example of how functional or complementary

task roles can emerge from a spontaneous break in symmetry. The exam-

ple concerns a multiagent binary search task investigated by Roberts and

Goldstone (2011). For this task, groups of internet-connected individuals

were required to collectively guess a target number between 51 and 100

over a series of guessing rounds. For each round, each individual in the
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group chose a number between 0 and 50, with the sum of the individual

choices equaling the group’s guess. After each guess, the groups were in-

formed of whether the collective sum was higher or lower than the target

number and this guess-then-feedback process was repeated until the group

successfully arrived at the target number. Not surprisingly, groups were

able to perform the task successfully and improved over time; groups took

fewer rounds to reach the target number as the number of games played

increased, with smaller groups taking less time (less rounds) to complete

the task than larger groups (i.e., groups of 8 to 10+ individuals). The most

interesting result obtained by Roberts and Goldstone, however, was that

for large groups individuals in the group tended to adopt differential roles

of feedback based reaction, with some individuals adopting a ‘reactor’ role,

whereas other individuals adopted a ‘non-reactor’ role. In short, reactors

were individuals who always changed their individual number choice over

repeated attempts/trials, whereas non-reactors were individuals who stuck

with the same number choice across repeated attempts/trials. Moreover,

the degree and persistence of differential reactivity across participants in the

larger groups was positively correlated with a group’s overall performance.

In other words, an emergent and persistent asymmetry of individual behav-

ior of complementary reactor and non-reactor roles enhanced the collective

success of larger groups as a whole. This differential asymmetry in task

role was not, however, observed for smaller groups (i.e., groups of 2 to 4

individuals). Rather individuals in these smaller groups all behaved in an

equivalent manner across repeated guesses and guessing rounds.

Before elaborating on how the findings of Roberts and Goldstone (2011)

provide yet another excellent example of how symmetry-breaking, in this

case spontaneous symmetry-breaking, operates to increase the functional

organization of multiagent systems, we wish to stress the following: for

this multiagent binary search task, cognitive success was not reducible to

any one individual group member, nor was it the result of the steady state

dynamics of the constituent individuals, but rather was an emergent capac-

ity that arose from the interactions among the individual group members.

Indeed, for this task, successful groups converged onto a globally stable

pattern of behavior, whereby the stability of this behavioral pattern was

dependent on the collective organization of the individuals involved, not the

individuals themselves. The same individuals, at a different time and given

a different set of initial conditions or responses would have most likely pro-

duced a different micro level pattern of individual reactive strategies, and

yet exhibited the same overall collective state and group success, both with
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respect to small and large groups (Theiner, Allen and Goldstone, 2010).

The implication of these latter points is twofold. First, the behavioral

state of the multiagent system investigated by Roberts and Goldstone is

best defined in terms of a single collective variable or order parameter.

Second, the micro level structure of the multiagent system was essentially

symmetric with respect to the interchange or permutation of the agents

involved. The collective multiagent system would behave the same if one

interchanged agent 1 with agent 20, and agent 5 with agent 14 (or any other

undergraduate agent from the University of Indiana, where the study was

conducted). In fact, it is safe to assume that each individual in a group was

more or less identical, in terms of cognitive ability and task understanding.

Armed with the previous points of reference and Curie’s principle now

firmly instilled (the symmetry of the effect is defined by the symmetry

of the causes that underlie that effect) one may readily anticipate why

Roberts and Goldstone uncovered what they did. If like us, the weight of

this chapter is starting to take on toll on your ability to think clearly, let’s

break it down.

A system with perfect symmetry must also entail a solution with per-

fect symmetry; a solution that preserves the symmetry of the system. For

the multiagent binary search task, where there was only two qualitative re-

sponse options (stay with what one did [non-react] or change ones response

[react]) this stable solution corresponds to every individual in the group

operating in an equivalent manner or, more specifically, as interchange-

able and non-persistent reactors and non-reactors. One can think of this

solution as similar to the homogenous, less ordered state of the oil in the

Rayleigh-Bénard convection system described earlier on in this chapter; the

state of the system prior to the symmetry breaking emergence of convection

roles. Note that this was the state that characterized smaller groups in the

Roberts and Goldstone study.

So what are the other stable states entailed by the symmetry of this

multiagent system? Well, there is essentially (qualitatively) only one, a

state of broken symmetry, which in this case corresponds to a differential

and more ordered grouping of the agents involved. That is, a differential

and persistent reactor vs. non-reactor state, which as we noted above is the

exact state that larger groups in the Roberts and Goldstone study adopted.

Feel free to think of this reactor vs. non-reactor state as a kind of like

the more ordered convection role state in the Rayleigh-Bénard convection

system, or better yet, as a kind of antiphase state.
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You might be saying to yourself at this point in the discussion,“ ok, so

the patterns are predicted by the symmetries of the system, but we are still

missing something; what brought about the spontaneous symmetry break

as group sized increased?” In other words, what was the control parameter

that determined whether groups adopted the symmetric (less ordered) or

asymmetric (more ordered) state? Roberts and Goldstone (2011) proposed

that the increased difficulty of the task for large groups, compared to small

groups, served to selectively pressure an increase in role differentiation and

specialization. This task difficulty was a function of feedback related re-

sponse uncertainty, which in smaller groups (groups with fewer degrees of

freedom) was inherently less compared to larger groups. Basically, it was

easier for individuals in a 2, 3 or 4 person group to know how (and in which

direction) the group would respond as a whole than it was for individuals

embedded within a much larger group due to response cancellation. This, of

course, makes sense given the symmetry of system. Thus, the spontaneous

symmetry break that occurred for the larger groups occurred specifically

because it increased the level of behavioral order of the system and, in turn,

functionally increased the coordination and performance of the group by

reducing uncertainty.

As a side note, this latter example further highlights how system re-

lated pressures can spontaneously generate increases in the structure and

persistent order of multiagent systems via symmetry breaking, suggesting

that symmetry related task difficulty might in fact reflect a general control

parameter for systems of collective cognition. In fact, we would conjec-

ture that symmetry defined parameters of task difficulty are likely to be

the control parameters that not only defined the types of patterns that are

possible for systems of collective cognition, but will also determine when

small vs. large group behavior emerges (akin to the above described control

parameters that underlie symmetry defined transitions between solo- and

joint-action).

5. Conclusion

Our aim with this chapter was ambitious, to convince you that the ordered

regularity and behavioral dynamics of coordinated multiagent (social) ac-

tivity are defined by the symmetries and symmetry-breaking events that

characterize an environmentally embedded and contextually situated task

goal. Stated more broadly, our aim was to convince you that the formal
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Fig. 16. Reciprocal relationship between symmetry-breaking and the emergence of em-

bedded (contextually dependent) multiagent dynamics. Bound by the behavioral possi-
bilities that the laws of nature prescribe, the behavioral order of multiagent coordination

and social activity emerge from symmetry-breaking events that operate to constrain and

determined the dynamics of system behavior. In a circularly causal manner, these dy-
namics further induce (generate) and maintain these brakes in symmetry in order to self-

sustain and co-regulate both the short and long term structure of goal directed behavior.

In this sense, spontaneous and explicit symmetry-breaking both creates and sustains the
existence, complexity and order of multiagent coordination and social activity.

and theoretical principles of symmetry and symmetry-breaking provide a

unifying approach to understanding the behavioral order of social coordi-

nation and multiagent activity. A synopsis of our argument is illustrated

in Figure 16, which is intended to provide an abstract picture of how the

symmetry and symmetry-breaking principles discussed here can be used to

formalize a lawful and highly generalizable understanding of coordinated

social activity.

Finally, we end by noting that although most of the examples discussed

here have focused on physical forms of multiagent coordination, the sym-

metry arguments raised in the current chapter and illustrated in Figure 16

are by no means restricted to these forms of behavior, and as the last exam-

ple exemplifies, can be applied at any level of behavioral description–from

the micro level organization of the human nervous and individual cognition

and perceptual-motor activity to the macroscopic organization of groups,

societies, and cultures. Indeed, as we have tried to reinforce throughout
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this chapter, the beauty of understanding behavioral order from a symme-

try perspective is that one can develop a common language of explanation

that highlights the lawful similitude of behavioral organization across all

scales of nature.

Acknowledgments We would like to thank (in alphabetical order) Kris

Ariyabuddhiphongs, Anthony Chemero, Charles Coey, Rick Dale, Brian

Eiler, Steven Harrison, Jeffery Kinsella-Shaw, Dilip Kondepudi, Heidi

Kloos, Peter Langland-Hassan, Kerry Marsh, Lynden Miles, Michael Ri-

ley, Elliot Saltzman, R. C. Schmidt, Ashley Walton, and Aury Washburn

for constructive and thought provoking discussions related to the material

presented here, as well as to Robert E. Shaw and Michael T. Turvey for

the many contributions to our theoretical knowledge about symmetry and

symmetry-breaking. Finally, we encourage anyone interested in becoming

more familiar with the symmetry perspective and Group Theory to read Joe

Rosen’s (1995, 1978/2012) books on symmetry and group theory and the

collective works of Ian Stewart and Martin Golubitsky. These works, espe-

cially those of Joe Rosen, greatly inspired a number of the group theoretic

examples devised here. Sections of Scott Kelso’s (1995) book also embed a

nice introduction to the importance of symmetry and symmetry breaking

with respect to the dynamics of human (motor) behavior. This work was

supported, in part, by the National Institutes of Health, R01GM105045.

The content is solely the responsibility of the authors and does not neces-

sarily represent the official views of the National Institutes of Health.

References

Ariyabuddhiphongs, K., Kallen, R. W. and Richardson, M. J. (2015). Coordina-
tion patterns of three coupled oscillators on a drumming task, in Poster
Presented at the CAP Center Guy Van Orden Research Conference.

beim Graben, P. (2014). Contextual emergence of intentionality, Journal of Con-
sciousness Studies 21, 5/6, pp. 75–96.

Bosga, J., Meulenbroek, R. G. and Cuijpers, R. H. (2010). Intra-and interpersonal
movement coordination in jointly moving a rocking board, Motor Control
14, pp. 440–459.

Brading, K. and Castellani, E. (2003). Symmetries in physics: Philosophical re-
flections, Cambridge University Press.

Byblow, W. D. and Goodman, D. (1994). Performance asymmetries in multifre-
quency coordination, Human Movement Science 13, 2, pp. 147–174.

Castellani, E. (2003). On the meaning of symmetry breaking, in Symmetries in



September 17, 2015 18:39 World Scientific Review Volume - 9in x 6in ContextualityBook page 282

282 Michael J. Richardson and Rachel W. Kallen

physics: Philosophical reflections, pp. 321–334, Cambridge University Press
Cambridge.

Cohen, A. H., Holmes, P. J. and Rand, R. H. (1982). The nature of the coupling
between segmental oscillators of the lamprey spinal generator for locomo-
tion: A mathematical model, Journal of Mathematical Biology 13, 3, pp.
345–369.

Collins, J. and Stewart, I. (1994). A group-theoretic approach to rings of coupled
biological oscillators, Biological Cybernetics 71, 2, pp. 95–103.

Collins, J. J. and Stewart, I. N. (1993). Coupled nonlinear oscillators and the
symmetries of animal gaits, Journal of Nonlinear Science 3, 1, pp. 349–
392.

Curie, P. (1894). Sur la symétrie dans les phénomènes physiques, symétries d’un
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